
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
March 15, 2017

• 5427: Proposed by Kenneth Korbin, New York, NY

Rationalize and simplify the fraction

(x+ 1)4

x(2016x2 − 2x+ 2016)
if x =

2017 +
√

2017−
√

2017

2017−
√

2017−
√

2017
.

• 5428: Proposed by Nicusor Zlota, “Traian Vuia” Technical College, Focsani, Romania

If x > 0, then
[x]

4
√

[x]4 + ([x] + 2{x})4
+

{x}
4
√
{x}4 + ([x] + 2{x})4

≥ 1− 1
4
√

2
, where [.] and

{.} respectively denote the integer part and the fractional part of x.

• 5429: Proposed by Titu Zvonaru, Comănesti, Romania and Neculai Stanciu, “George
Emil Palade” School, Buzău, Romania

Prove that there are infinitely many positive integers a, b such that
18a2 − b2 − 6a− b = 0.

• 5430: Proposed by Oleh Faynshteyn, Leipzig, Germany

Let a, b, c be the side-lengths, α, β, γ the angles, and R, r the radii respectively of the
circumcircle and incircle of a triangle. Show that

a3 · cos(β − γ) + b3 · cos(γ − α) + c3 · cos(α− β)

(b+ c) cosα+ (c+ a) cosβ + (a+ b) cos γ
= 6Rr.

• 5431: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let Fn be the nth Fibonacci number defined by F1 = 1, F2 = 1 and for all n ≥ 3,
Fn = Fn−1 + Fn−2. Prove that

∞∑
n=1

(
1

11

)FnFn+1

is an irrational number and determine it (*).
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The asterisk (∗) indicates that neither the author of the problem nor the editor are
aware of a closed form for the irrational number.

• 5432: Proposed by Ovidiu Furdui and Alina Ŝıntămărian, Technical University of
Cluj-Napoca, Cluj-Napoca, Romania

Find all differentiable functions f : (0,∞)→ (0,∞), with f(1) =
√

2, such that

f ′
(

1

x

)
=

1

f(x)
, ∀x > 0.

Solutions

• 5409: Proposed by Kenneth Korbin, New York, NY

Given isosceles trapezoid ABCD with AB < CD, and with diagonal AC = AB + CD.
Find the perimeter of the trapezoid if 4ABC has inradius 12 and if 4ACD has
inradius 35.

Solution 1 by Michael N. Fried, Ben-Gurion University, Beer-Sheva, Israel

Let |AB| = x, |AC| = |AD| = c, |AC| = K so that, since |AC| = |AB|+ |CD|, we can
write |DC| = K − x.
The key observation is that if the triangle ABC is reflected and transposed so that BC
coincides with AD, the resulting figure AEDC is an equilateral triangle. This is so
because:
1) The trapezoid is isosceles, so that EDA = π −ADC, and, therefore, EDC is a
straight line
2) By the given, |AB|+ |DC| = |ED|+ |DC| = x+K − x = K, and, therefore,
|EA| = |AC| = |CE| = K.
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With the geometry of the situation in mind, one can now easily see that since the
diameter of O1 is 24 and the diameter of O2 is 70, the length of the side of the
equilateral triangle (i.e. the diagonal of the original trapezoid) cannot be less than 94
units. This will be important later.
Now, since the twice the area of a triangle is the product of its inradius and its
perimeter, we find that twice the area of the triangle AED is 12(c+K + x) and twice
the area of the triangle ADC is 35(c+K +K − x). On the other hand, since we have
observed that EAC is equilateral, twice the areas of these triangles are also,

respectively,
√
3
2 Kx and

√
3
2 K(K − x). Thus, we can write the following two equations:

c+K + x =

√
3

24
Kx (1)

c+ 2K − x =

√
3

70
K(K − x) (2)

Using the law of cosines in the triangle AED and the fact that angle < AED = π
3 , we

have a third equation:

c2 = K2 + x2 −Kx (3)

Thus, we have three quadratic equations in three unknowns, c,K, and x. We will show
that this can be reduced to a single quadratic equation in K, from which we will be able
to find x and c.
To make the algebra easier to write out, let us use the following notations:

q =
√
3

24

p =
√
3

70
Q = qK − 1
P = pK − 1
The reason for the latter two will become clear in a moment.
Eliminating c from equations 1 and 2, we find that x = K(pK−1)

K(p+q)−2 or using our notation
above:

x =
KP

P +Q
(4)

Note, 1 can be written as K + c = (qK − 1)x = Qx (similarly, 2 can be written
K + c = P (K − x)), so substituting 4 into 1 in this form, we find, after some easy
manipulations:

c =
K

P +Q
(PQ− (P +Q)) (5)

On the other hand, substituting 4 into 3 and rearranging terms we obtain:

c2 =

(
K

P +Q

)2

((P +Q)2 + P 2 − P (P +Q)) (6)

Squaring 5, equating it with 6, and canceling
(

K
P+Q

)2
, we obtain:

(PQ− (P +Q))2 = (P +Q)2 + P 2 − P (P +Q)

And after some simplification, we have the equation:

PQ(PQ− 2(P +Q) + 1) = 0
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But since Qx = K + c > 0 and P (K − x) = K + c > 0, neither P nor Q can be 0, so, we
have:

PQ− 2(P +Q) + 1 = 0

At this point, we can substitute pK − 1 = P and qK − 1 = Q, to obtain the following
quadratic equation in K:

pqK2 − 3(p+ q)K + 6 = 0 (7)

Substituting p =
√
3

70 and q =
√
3

24 and solving, we obtain two solutions:

K = 80
√

3 ≈ 138.564 or K = 14
√

3 ≈ 24.245. As we noted above, K cannot be less than
94, so we have only K = 80

√
3. Using 4 and 5 to find x and c, we find then that the

perimeter of ABCD= 2c+K = 226
√

3 ≈ 391.443

Solution 2 by David E. Manes, SUNY College at Oneonta, Oneonta, NY

Let x = AB, y = CD and z = AD = BC. Then the perimeter of the trapezoid ABCD
is x+ y + 2z = 226

√
3 when x = 17

√
3, y = 63

√
3 and z = 73

√
3.

Denote the area of polygon X by [X]. Then, by Ptolemy’s theorem, AC =
√
xy + z2.

Therefore, x + y =
√
xy + z2. Solving for z2, we get z2 = x2 + xy + y2. The height h of

the trapezoid, according to the Pythagorean theorem, is given by

h =

√
z2 −

(y − x
2

)2
=

√
3

2
(x+ y).

Therefore,

[ABC] =
1

2
· x ·
√

3

2
(x+ y)

and

[ACD] =
1

2
· y ·
√

3

2
(x+ y).

Let r denote the inradius of triangle T . Then r · s = [T ] where s is the semiperimeter of
T . For each of the triangles ACD and ABC, this formula reduces to

35

2
(x+ 2y + z) =

√
3

4
y(x+ y),

6(2x+ y + z) =

√
3

4
x(x+ y),

respectively. Multiplying the first equation by x, the second by y and then subtracting
the second equation from the first yields the following upon simplification:

z(
35

2
x− 6y) = 6y2 − 23xy − 35

2
x2.

Since z =
√
x2 + xy + y2, we have√

x2 + xy + y2(
35

2
x− 6y) = 6y2 − 23xy − 35

2
x2.

Squaring both sides of this equation and then simplifying it, one obtains the equation

136y2 − 249xy − 945x2 = 0.
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Regarding this equation as a quadratic in y, one obtains the following roots

y =
249x±

√
(249x)2 + 4(136)(945x2)

272

=
249x± 759x

272
.

Since y > 0 we disregard the negative root so that

y =
1008

272
x =

63

17
x.

Moreover,

z =
√
x2 + xy + y2 =

√
x2 +

63

17
x2 +

(63

17
x
)2

=
73

17
x.

Thus, our solutions are parametrized by x and the problem now is to find the value(s) of
x that satisfy the two equations for the inradius. To that end suppose

6
(
2x+

63

17
x+

73

17
x
)

=

√
3

4
x
(
x+

63

17
x
)
.

Then x = 17
√

3. Similarly, the equation 35
2 (x+ 2y + z) =

√
3
4 y(x+ y) yields x = 17

√
3.

Hence, y = 63
17x = 63

√
3 and z = 73

17x = 73
√

3 so that the perimeter of the trapezoid

ABCD is x+ y + 2z = 226
√

3.

Solution 3 by Nikos Kalapodis, Patras, Greece

Let P be the intersection of diagonals AC and BD. Since trapezoid ABCD is isosceles,
the triangles ABC and BAD, as well as, the triangles ACD and BDC are congruent,
(SAS criterion).
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It follows that the triangles PAB and PCD are isosceles with PA = PB and PC = PD
(1).
Furthermore, since they are similar (congruent angles) we have
PA

AB
=
PC

CD
=
PA+ PC

AB + CD
=

AC

AB + CD
= 1. Thus, PA = AB and PC = CD (2).

From (1) and (2) we conclude that triangles PAB and PCD are equilateral.
Let p = AB = PA = PB, q = CD = PC = PD, r = BC = AD, t = p+ q + r and h the
height of the trapezoid. Then we have
p

q
=
ph

qh
=

2[ABC]

2[ACD]
=

12(2p+ q + r)

35(p+ 2q + r)
=

12(p+ t)

35(q + t)
or 23pq = t(12q − 35p) (3)

Since the trapezoid is isosceles, it is cyclic, so by Ptolemy’s Theorem we have
pq + r2 = (p+ q)2 (4) or pq = t(p+ q − r) (5)
By (3) and (5) we obtain 58p+ 11q = 23r (6)

Finally, applying the well-known formula r = (s− a) tan
A

2
in triangles ACD and BAC

we have

23 = 35− 12 =

(
p+ 2q + r

2
− r
) √

3

3
−
(

2p+ q + r

2
− r
) √

3

3
=
q − p

2
·
√

3

3
, i.e.

q − p = 46
√

3 (7).
Solving the system of equations (4), (6) and (7) we find p = 17

√
3, q = 63

√
3, and

r = 73
√

3.
Therefore the perimeter of trapezoid is p+ q + 2r = 226

√
3.

Also solved by Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong,
China; Albert Stadler, Herrliberg, Switzerland; Malik Sheykhov (student at
the France-Azerbaijan University in Azerbaijan) and Talman Residli
(student at Azerbaijan Medical University in Baku, Azerbaijan); David
Stone and John Hawkins, Georgia Southern University, Statesboro, GA, and
the proposer

• 5410: Proposed by Arkady Alt, San Jose, CA

For the given integers a1, a2, a3 ≥ 2 find the largest value of the integer semiperimeter of
a triangle with integer side lengths t1, t2, t3 satisfying the inequalities ti ≤ ai, i = 1, 2, 3.

Solution 1 by Kee-Wai Lau, Hong Kong, China

Without loss of generality, we assume that a1 ≥ a2 ≥ a3. Let

T1 = {2, 3, . . . , a1}, T2 = {2, 3, . . . , a2}, T3 = {2, 3, . . . , a3}

T = {(t1, t2, t3) : t1 ∈ T1, t2 ∈ T2, t3 ∈ T3} and

S = T ∩ {(t1, t2t3) : t1, t2, t3 are the side lengths of a triangle}.

Let L = Maximum
(t1,t2,t3)∈S

t1 + t2 + t3
2

. We show that L =


a1 + a2 + a3

2
, if a2 + a3 > a1

a2 + a3 −
1

2
, if a2 + a3 ≤ a1.

Case 1: a2 + a3 > a1
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We have (a1, a2, a3) ∈ S and clearly L =
a1 + a2 + a3

2
.

Case 2: a2 + a3 ≤ a1
We have (a2 + a3 − 1, a2, a3) ∈ S so that L ≥ a2 + a3 −

1

2
. If (t1, t2, t3) ∈ T

and t1 > a2 + a3 − 1, then (t1, t2, t3) /∈ S. If (t1, t2, t3) ∈ T then t1 < a2 + a3 − 1, then

t1 + t2 + t3
2

<
(a2 + a3 − 1) + a2 + a3

2
= a2 + a3 −

1

2
. Hence, L = a2 + a3 −

1

2
in this

case.

This completes the solution.

Solution 2 by proposer

Let s =
t1 + t2 + t3

2
. Since ti < s, i = 1, 2, 3 then by the triangle inequality our problem

becomes the following: Find the maximum of s for which there are positive integer
numbers t1, t2, t3 satisfying ti ≤ min{ai, s− 1), i = 1, 2, 3, t1 + t2 + t3 = 2s.

First note that s ≥ 3, ti ≥ 2, i = 1, 2, 3. Indeed, since ti ≤ s− 1 then 1 ≤ s− ti, i = 1, 2, 3
and therefore t1 = 2s− t2 − t3 = (s− t2) + (s− t3) ≥ 2. Cyclicly we obtian t2, t3 ≥ 2
Hence, 2s ≥ 6 ⇐⇒ s ≥ 3.

Since t3 = 2s− t1 − t2, 2 ≤ t3 ≤ min{a3, s− 1}, then
1 ≤ 2s− t1 − t2 ≤ min{a3, s− 1} ⇐⇒ max{2s− t1 − a3, s+ 1− t1} ≤ t2 ≤ 2s− 1− t1,
and therefore, we obtain the inequality for t2, namely that

(1) max{2s− t1 − a3, s+ 1− t1, 2} ≤ t2 ≤ min{2s− 1− t1, a2, s− 1}

with the conditions of solvability being:

(2)


2s− t1 − a3 ≤ s− 1
2s− t1 − a3 ≤ a2
s+ 1− t1 ≤ a2

2 ≤ 2s− 1− t1

⇐⇒


s+ 1− a3 ≤ t1

2s− a2 − a3 ≤ t1
s+ 1− a2 ≤ t1

t1 ≤ 2s− 3

Since s− 1 ≤ 2s− 3, then (2) together with 2 ≤ t1 ≤ min{a1, s− 1} gives us the bounds
for t1

(3) max{s+ 1− a3, 2s− a2 − a3, s+ 1− a2, 2} ≤ t1 ≤= min{a1, s− 1}.
Since 2 ≤ ai, i = 1, 2, 3 then s+ 1− a2 ≤ s− 1, s+ 1− a3 ≤ s− 1 and the solvability
condition for (3) becomes

s+ 1− a3 ≤ a1 ⇐⇒ s ≤ a1 + a3 − 1, 2s− a2 − a3 ≤ a1 ⇐⇒ s ≤
⌊
a1 + a2 + a3

2

⌋
,

s+ 1− a2 ≤ a1 ⇐⇒ s ≤ a1 + a2 − 1, 2s− a2 − a3 ≤ s− 1 ⇐⇒ s ≤ +a2 + a3 − 1.

Thus, s∗ = min

{⌊
a1 + a2 + a3

2

⌋
, a1 + a2 − 1, a2 + a3 − 1, a3 + a1 − 1

}
is the largest

integer value of the semiperimeter.

Solution 3 by Ed Gray, Highland Beach, FL

We consider several special cases:

a) If a1 = a2 = a3 = 2k, we can equate ti = ai for each i. The perimeter is then 6k and
the semiperimeter is 3k.
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b) Suppose a1 = a2 = a3 = 2k + 1. We note that a1 + a2 = 4k + 2 and a3 − 1 = 2k. We
define t1 = a1, t2 = a2 and t3 = a3 − 1.

c) Suppose that a1 = a2 and a3 is larger than either one. In this case we set t1 = a1 and
t2 = a2. It doesn’t matter if a1, a2 are both even or both odd, t1 + t2 is even. We now
have to avoid a potential problem. It must be true that t1 + t2 ≥ t3. Therefore, since if
a3 is large, we need to define t3 = a3 − x, where x is the integer which is the smallest
such that a3 − x is even and t1 + t2 > t3. Since t1 + t2 + t3 is even, the semiperimeter is
integral.

d) Suppose that a1 = a2 and a3 is smaller than either one, in this case set
t1 = a1, t2 = a2, so that t1 + t2 is even. If a3=2, we let t3 = 2. If a3 > 2, but odd, we we
set t3 = a3 − 1. Then t1 + t2 + t3 equals the perimeter which is even and with an integer
semiperimeter, and the triangle inequalities hold.

e) Finally, we have the general case: a1 < a2 < a3. We set t1 = a1, t2 = a2. If t1 + t2 is
even we need t3 to be even. If a3 is very far so that a1 + a2 < a3, we let t3 = a3 − x,
where x is the smallest integer which simultaneously makes t1 + t2 + t3 even and
t1 + t2 > t3. If t1 + t2 is odd, we employ a similar calculation.

Solution 4 by Paul M. Harms, North Newton, KS

Suppose a1 ≤ a2 ≤ a3. The largest perimeter would be a1 + a2 + a3 where
ti = ai, i = 1, 2, 3 provided that we have a triangle, i.e., a1 + a2 > a3.

If a1 + a2 > a3, and the perimeter is an even integer, then the largest value of an integer

semiperimeter is
a1 +2 +a3

2
.

If the perimeter is an odd integer, then a3 must be at least 3 and we could use sides
t1 = a1, t2 = a2 and t3 = a3 − 1. The largest integer semiperimeter for this case is
a1 + a2 + a3 − 1

2
.

Now consider the case where a1 + a2 ≤ a3. A triangle with a maximum perimeter is
when t1 = a1, a2 = t2, and t3 = a1 + a2 − 1. Here t3 > a1, a2 and the perimeter is the
odd integer 2a1 + 2a2 − 1. To get the largest integer semiperimeter we could use
t1 = a1, t2 = a2 and t3 = a1 + a2 − 2 which has a1 + a2 − 1 as the largest integer
semiperimeter.

Also solved by Jeremiah Bartz and Timothy Prescott, University of North
Dakota, Grand Forks, ND; David Stone and John Hawkins, Georgia
Southern University, Statesboro, GA

• 5411: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” General School,
Buzău, Romania

Let (an)n≥1 , (bn)n≥1 be real valued positive sequences with lim
n→∞

an = lim
n→∞

bn = a ∈ R∗+

If lim
n→∞

(n (an − a)) = b ∈ R and lim
n→∞

(n (bn − a)) = c ∈ R compute

lim
n→∞

(
an+1

n+1
√

(n+ 1)!− bn
n
√
n!
)
.

Note: R∗+ means the positive real numbers without zero.
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Solution 1 by Brian Bradie, Christopher Newport University, Newport
News, VA

By Stirling’s approximation,
n! ∼

√
2πnn+1/2e−n,

so
n
√
n! ∼ n

e
and n+1

√
(n+ 1)! ∼ n+ 1

e
.

It then follows that

an+1
n+1
√

(n+ 1)!− bn
n
√
n! ∼ (n+ 1)an+1

e
− nbn

e

=
1

e
[(n+ 1)(an+1 − a)− n(bn − a) + a]

and

lim
n→∞

(
an+1

n+1
√

(n+ 1)!− bn
n
√
n!
)

= lim
n→∞

1

e
[(n+ 1)(an+1 − a)− n(bn − a) + a]

=
1

e
(b− c+ a).

Solution 2: by Moti Levy, Rehovot, Israel.

lim
n→∞

(
((n+ 1)!)

1
n+1 an+1 − (n!)

1
n bn

)
= lim

n→∞

(
((n+ 1)!)

1
n+1

n+ 1
((n+ 1) (an+1 − a)) + ((n+ 1)!)

1
n+1 a− (n!)

1
n

n
(n (bn − a))− (n!)

1
n a

)

= lim
n→∞

((n+ 1)!)
1

n+1

n+ 1
((n+ 1) (an+1 − a))− lim

n→∞

(n!)
1
n

n
(n (bn − a)) + a lim

n→∞

(
((n+ 1)!)

1
n+1 − (n!)

1
n

)
= lim

n→∞

((n+ 1)!)
1

n+1

n+ 1
lim
n→∞

((n+ 1) (an+1 − a))

− lim
n→∞

(n!)
1
n

n
lim
n→∞

(n (bn − a)) + a lim
n→∞

(
((n+ 1)!)

1
n+1 − (n!)

1
n

)
.

So we are challenged with two limits: limn→∞
(n!)

1
n

n and

limn→∞

(
((n+ 1)!)

1
n+1 − (n!)

1
n

)
. We will show that both limits equal to 1

e .

We begin by stating the well-known asymptotic expansion of the Gamma function:

ex

xx
√

2πx
Γ (x+ 1) ∼ 1 +

1

12x
, x→∞.

For positive integer n, ( e
n

)n n!√
2πn

∼ 1 +
1

12n
, n→∞.

Using
(
1 + 1

12n

) 1
n ∼ 1 + 1

12n2 and
(√

2πn
) 1

n ∼ 1, we get

e

n
(n!)

1
n ∼ 1 +

1

12n2
, n→∞,
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or
(n!)

1
n

n
∼ 1

e

(
1 +

1

12n2

)
, n→∞,

which implies

lim
n→∞

(n!)
1
n

n
=

1

e
.

lim
n→∞

(
((n+ 1)!)

1
n+1 − (n!)

1
n

)
= lim

n→∞
(n!)

1
n

(
((n+ 1)!)

1
n+1

(n!)
1
n

− 1

)

(n!)
1
n

n
∼ 1

e

(
1 +

1

12n2

)
;

((n+ 1)!)
1

n+1

n+ 1
∼ 1

e

(
1 +

1

12n2

)
((n+1)!)

1
n+1

n+1

(n!)
1
n

n

∼ 1 ⇒ ((n+ 1)!)
1

n+1

(n!)
1
n

∼ n+ 1

n
= 1 +

1

n

((n+ 1)!)
1

n+1

(n!)
1
n

− 1 ∼ 1

n

(n!)
1
n

(
((n+ 1)!)

1
n+1

(n!)
1
n

− 1

)
∼ n

e

(
1 +

1

12n2

)
1

n
∼ 1

e
.

We conclude that

lim
n→∞

(
((n+ 1)!)

1
n+1 − (n!)

1
n

)
=

1

e
.

Now back to the original limit

lim
n→∞

((n+ 1)!)
1

n+1

n+ 1
lim
n→∞

((n+ 1) (an+1 − a))

− lim
n→∞

(n!)
1
n

n
lim
n→∞

(n (bn − a)) + a lim
n→∞

(
((n+ 1)!)

1
n+1 − (n!)

1
n

)
=

1

e
b− 1

e
c+ a

1

e
=
a+ b− c

e
.

Also solved by Arkady Alt, San Jose, CA; Paul M. Harms, North Newton,
KS; Paolo Perfetti, Department of Mathematics, Tor Vergata, Rome, Italy,
and the proposers.

• 5412: Proposed by Michal Kremzer, Gliwice, Silesia, Poland

Given positive integer M . Find a continuous, non-constant function f : R→ R such
that f (f(x)) = f ([x]), for all real x, and for which the maximum value of f(x) is M .

Note: [x] is the greatest integer function.

Solution 1 by Tommy Dreyfus, Tel Aviv University, Israel

Let f(x) = 0 except for M < x < M + 1, where f(x) = M − 2M

∣∣∣∣x− (M +
1

2

)∣∣∣∣.
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Then f is continuous, attains its maximum at f

(
M +

1

2

)
= M , and

f(f(x)) = f([x]) = 0 for all x.

Solution 2 by Albert Stadler, Herrliberg Switzerland

Let f(x) =

{
M sin2 (πx) , if x < 0 or x > M

0, if 0 ≤ x ≤ M .

f(x) is continuous and non-constant. In addition f(n) = 0 for all integers n.
0 ≤ f(x) ≤M and the maximum M is assumed.

f ([x]) = 0 for all real x since [x] is an integer. f(f(x)) = 0 for all real x, since
0 ≤ (x) ≤M and f(y) = 0 for 0 ≤ y ≤M .

Solution 3 by Moti Levy, Rehovot, Israel
Let f : R→ R be defined as follows (M is positive integer):

f (x) =

{
M
[

x
M+1

]
sin2 (πx) , for M + 2 ≥ x ≥M + 1

0, otherwise.

The function f (x) is continuous and its maximum value over R is M .
Clearly (since sin2 (π [x]) = 0) ,

f ([x]) = 0.

By its definition 0 ≤ f (x) ≤M. Hence, f (f (x)) = 0, since
[
f(x)
M+1

]
= 0.

f (f (x)) =

{
M
[
f(x)
M+1

]
sin2 (πf (x)) = 0, for M + 2 ≥ x ≥M + 1

0, otherwise.

We conclude that f (x) is continuous and non-constant function with maximum value
M , which satisfies f(f(x)) = f([x]) = 0.

Solution 4 by The Ashland University Undergraduate Problem Solving
Group, Ashland, OH

The following function satisfies the given conditions;

f(x) =


−x+ 2M − 2 if M − 2 ≤ x ≤M − 3/2
x+ 1 if M − 3/2 < x ≤M − 1
M otherwise.

We can easliy check that f is continuous by noting that:

f(M − 2) = M, f

(
M − 3

2

)
= M − 1

2
, and f(M − 1) = M.

We now show f satisfies f (f(x)) = f ([x]).

When x ≤M − 2, [x] ≤M − 2 and f(f(x)) = f(M) = M = f([x]).

When x ≥M − 1, [x] ≥M − 1 and f(f(x)) = f(M) = M = f([x].

Finally, when M − 2 < x < M − 1, [x] = M − 2 and M − 1

2
≤ f(x) < M .

Thus, f(f(x)) = M = f ([x]).
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Also solved by Michael N. Fried, Ben-Gurion University, Beer-Sheva, Israel,
and the proposer.

• 5413: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Compute

lim
n→∞

1

n

∑
1≤i≤j≤n

1√
(n2 + (i+ j)n+ ij)

.

Solution 1 by Brian Bradie, Christopher Newport University, Newport
News, VA

lim
n→∞

1

n

∑
1≤i≤j≤n

1√
n2 + (i+ j)n+ ij

= lim
n→∞

∑
1≤i≤j≤n

1√
(1 + i/n)(1 + j/n)

· 1

n2

=

∫ 1

0

∫ x

0

1√
(1 + x)(1 + y)

dy dx

=

∫ 1

0

2√
1 + x

·
√

1 + y

∣∣∣∣x
0

=

∫ 1

0

(
2− 2√

1 + x

)
dx

=
(
2x− 4

√
1 + x

)∣∣∣1
0

= 6− 4
√

2.

Solution 2 by Kee-Wai Lau, Hong Kong, China

Since n2 + (i+ j)n+ ij = (n+ i)(n+ j), it is easy to check that

∑
1≤i≤j≤n

1√
n2 + (i+ j)n+ ij

=
1

2

(
n∑
i=1

1√
n+ i

)2

+
1

2

n∑
i=1

1

n+ i
(1)

Now lim
n→∞

1√
n

n∑
i=1

1√
n+ i

= lim
n→∞

n∑
i=1

1

n
√
n+ 1

n

=

∫ 1

0

dx√
1 + x

= 2
(√

2− 1
)

, and from

0 <

n∑
i=1

1

n+ i
≤ n

n+ 1
, we have lim

n→∞

1

n

n∑
i=1

1

n+ i
= 0, so by (1), we obtain

lim
n→∞

1

n

∑
1≤i≤j≤n

1√
n2 + (i+ j)n+ ij

= 2(3− 2
√

2).

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro,
Spain; Moti Levy, Rehovot, Israel; Paolo Perfetti, Department of
Mathematics, Tor Vergata, Rome, Italy; Albert Stadler, Herrliberg,
Switzerland, and the proposer.
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• 5414: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let A,B ∈M2(C) be such that 2015AB − 2016BA = 2017I2. Prove that

(AB −BA)2 = O2.

Here, C is the set of complex numbers.

Solution 1 by Anthony J. Bevelacqua, University of North Dakota, Grand
Forks, ND

Recall that the characteristic polynomial of a 2x2 matrix M is pM (x) = det(M − xI2).
An easy calculation shows that pM (x) = x2 − tr(M )x + det(M ) where det(M) is the
determinate of M and tr(M) is its trace. By the Cayley-Hamilton Theorem we have
pM (M) = 02.

We first note that AB and BA have the same characteristic polynomial p(x) because
det(AB) = det(BA) and tr(AB) = tr(BA).

We given 2015AB − 2016BA = 2017I2. Adding AB to both sides of this equation yields

2016(AB −BA) = AB + 2017I2.

Taking the determinant of this we find

20162 det(AB −BA) = det(AB + 2017I2) = p(−2017).

Similarly adding BA to both sides of the original equation and taking the determinant
yields

20152 det(AB −BA) = 20152 det(AB −BA) = p(−2017).

Thus
20162 det(AB −BA) = 20152 det(AB −BA)

and so det(AB −BA) = 0.

Since tr(AB −BA)=tr(AB)−tr(BA) = 0 we see that the characteristic polynomial of
AB −BA is x2. Thus, (AB −BA)2 = 02.

Essentially the same argument would establish the following mild generalization: Let
A,B ∈M2(K) were K is a field. Let s, t ∈ K with s 6= ±1 and t6= 0. Then
AB − sBA = tI2 implies (AB −BA)2 = 02.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

AB and BA have the same eigenvalues, since det(xI2 −AB) = det(xI2 −BA). Indeed,
when A is nonsingular this result follows from the fact that AB and BA are similar:
BA = A−1(AB)A.

For the case where both A and B are singular, one may remark that the desired identity
is an equality between polynomials in x and the coefficients of the matrices. Thus, to
prove this equality, it suffices to prove that it is veified on a non-empty open subset (for
the usual topology, or, more generally, for the Zariski topology) of the space of all the
coefficients. As the non-singular matrices form such an open subset of the space of all
matrices, this proves the result.
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Let x be an eigenvalue of AB. Then

0 = det (xI2 −AB) = det

(
xI2 −

2016

2015
BA− 2017

2015
I2

)

=
20162

20152
det

(
x− 2017

2015
2016
2015

I2 −BA

)

=
20162

20152
det

(
x− 2017

2015
2016
2015

I2 −AB

)

=
20162

20152
det

(
2015x− 2017

2016
I2 −AB

)
. (1)

det(xI2 −AB) is a quadratic polynomial in x, let’s say det(xI2 −AB) = ax2 + bx+ c.

(1) then implies that

ax2 + bx+ c =
20162

20152

(
a

(
2015x− 2017

2016

)2

+ b

(
2015− 2017

2016

)
+ c

)
. We compare the

coefficients of the polynomials and see that b = 4034a, c = 20172a.

So the quadratic polynomial reads as ax2 + 4034ax+ 20172a = a(x+ 2017)2 which
shows that the characteristic polynomial of AB and BA has -2017 as a double zero, x is
an eigenvector of both AB and BA corresponding to the eigenvalue -2017. Therefore

there are numbers u and v such that AB is similar to

(
−2017 u

0 −2017

)
and BA is similar to

(
−2017 v

0 −2017

)
. Therefore, (AB −BA)2 is thus similar to(

0 u− v
0 0

)
= 02, which implies that (AB −BA)2 = 02.

Solution 3 by Michael N. Fried, Ben-Gurion University, Beer-Sheva, Israel

Let us write [A,B] for AB −BA. Since traceAB = traceBA, we have, as is well-known,
trace[A,B] = 0. Thus, keeping in mind that [A,B] is a 2× 2 matrix, the characteristic
polynomial of [A,B] is x2 + det[A,B] = 0, so that if its eigenvalues are λ1 and λ2, we
have λ = λ1 = −λ2 and λ2 = −det[A,B]. Moreover, since every matrix satisfies its own
characteristic polynomial,

[A,B]2 = −det[A,B]I

Therefore, [A,B]2 = 0, which is what we want to show, if and only if
λ2 = −det[A,B] = 0, that is, if and only if λ = 0. We will show that, indeed, λ = 0
Consider the given equation pAB − (p+ 1)BA = (p+ 2)I. By adding BA or AB to both
sides, we obtain, respectively:

p[A,B] = (p+ 2)I +BA (8)

(p+ 1)[A,B] = (p+ 2)I +AB (9)
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Let λ be an eigenvalue for [A,B] and v the corresponding eigemvector. Thus, we have
by (8):

p[A,B]v = pλv = ((p+ 2)I +BA)v

Thus,
BAv = (pλ− (p+ 2))v

so that, pλ− (p+ 2) is an eigenvalue for BA. Since −λ is the other eigenvalue of [A,B],
we find that −(pλ+ (p+ 2)) is the second eigenvalue of BA.
In the same way, using equation (9), we find the eigenvalues of AB to be
(p+ 1)λ− (p+ 2) and −((p+ 1)λ+ (p+ 2))
The determinant of any matrix is of course equal to the product of the eigenvalues.
Moreover, detAB = detBA. Hence:

−(pλ+ (p+ 2))(pλ− (p+ 2)) = −((p+ 1)λ+ (p+ 2))((p+ 1)λ− (p+ 2))

From which we have:
((p+ 1)2 − p2)λ2 = 0

So that λ = 0, which is what we wished to prove.

Solution 4 by Brian D. Beasley, Presbyterian College, Clinton, SC

Assume A,B ∈M2(C) with nAB − (n+ 1)BA = (n+ 2)I2 for some positive integer n.

Write A =

[
a b
c d

]
and B =

[
e f
g h

]
.

Then (AB −BA)2 = kI2, where

k = (bg − cf)2 + (af + bh− be− df)(ce+ dg − ag − ch).

By hypothesis, we have:

n(ae+ bg)− (n+ 1)(ae+ cf) = n+ 2 n(af + bh)− (n+ 1)(be+ df) = 0
n(cf + dh)− (n+ 1)(bg + dh) = n+ 2 n(ce+ dg)− (n+ 1)(ag + ch) = 0.

Thus n(af + bh− be− df) = be+ df and n(ce+ dg − ag − ch) = ag + ch. Also,
(n+ 1)/n = (af + bh)/(be+ df) = (ce+ dg)/(ag + ch), and ae− dh = (2n+ 1)(bg − cf).

Substituting yields

k =
(ae− dh)(bg − cf)

2n+ 1
+

(be+ df)(ag + ch)

n2
.
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Then

(2n+ 1)k = abeg − acef − bdgh+ cdfh+
2n+ 1

n2
(abeg + bceh+ adfg + cdfh)

=

(
n+ 1

n

)2

(abeg + cdfh)− (acef + bdgh) +
2n+ 1

n2
(adfg + bceh)

=

(
n+ 1

n

)2

[(ag + ch)(be+ df)− adfg − bceh]− (acef + bdgh) +
2n+ 1

n2
(adfg + bceh)

=

(
n+ 1

n

)2

(ag + ch)(be+ df)− (adfg + bceh)− (acef + bdgh)

=

(
af + bh

be+ df

)(
ce+ dg

ag + ch

)
(ag + ch)(be+ df)− (adfg + bceh)− (acef + bdgh)

= (af + bh)(ce+ dg)− (adfg + bceh)− (acef + bdgh)

= 0.

Hence k = 0 as needed.

Also solved by Moti Levy, Rehovot, Israel, and the proposer.

Mea Culpa

Paul M. Harms of North Newton, KS and Jeremiah Bartz of University of
North Dakota, Grand Forks, ND should have each been credited with having
solved problem 5403.
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