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This section of the Journal offers readers an opportunity to exchange interesting mathematical prob-
lems and solutions. Please email them to Prof. Albert Natian at Department of Mathematics, Los
Angeles Valley College. Please make sure every proposed problem or proposed solution is pro-
vided in both LaTeX and pdf documents. Thank you!

To propose problems, email them to: problems4ssma@gmail.com

To propose solutions, email them to: solutions4ssma@gmail.com

Solutions to previously published problems can be seen at ăwww.ssma.org/publicationsą.

Solutions to the problems published in this issue should be submitted before April 1, 2025.

‚ 5793 Proposed by Daniel Sitaru, National Economic College "Theodor Costescu"
Drobeta Turnu - Severin, Romania.

Suppose f : ra, bs Ñ r1,8q is a continuous function with 0 ă a ď b. Then:

npb´ aqn´1
ż b

a
f pxqdx ď pn´ 1qpb´ aqn `

˜

ż b

a
f pxqdx

¸n

.

‚ 5794 Proposed by Michel Bataille, Rouen, France.

Let Bm denote the m-th Bernoulli number (B0 “ 1 and pm ` 1qBm `

m´1
ÿ

j“0

ˆ

m` 1
j

˙

B j “ 0 for

m ě 1). Evaluate

lim
nÑ8

n
ÿ

k“0

ˆ

2n
2k

˙

B2k

p2nq2k
.

‚ 5795 Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania.

Calculate the integral

I “
ż 8

0

arctan x

p1` xq
?

1` x2
dx.

‚ 5796 Proposed by Problem proposed by Shivam Sharma, Delhi University, New Delhi, India,
and Surjeet Singh, Indian Institute of Technology Kanpur, India.
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Here, ζ denotes the zeta function. Prove that:

8
ÿ

k“0

8
ÿ

p“k

1
pp` 1qpp` 2q

`p
k

˘ “ ζp2q.

‚ 5797 Proposed by Toyesh Prakash Sharma and Etisha Sharma, Agra College, Agra, India.

Solve the following differential equation without the aid of computers:
´

x2 ln2 x
¯ d2y

dx2 ´ p2x ln xq
dy
dx
` p2` ln xq y` ln3 x “ 0.

‚ 5798 Proposed by Vasile Cirtoaje, Petroleum-Gas University of Ploiesti, Romania.

Let a, b, c, d be positive real numbers such that ab ` bc ` cd ` da “ 4. Prove that if (i) a ě
b ě 1 ě c ě d or (ii) a ě b ě c ě 1 ě d, then

1
a
`

1
b
`

1
c
`

1
d
` 8 ě 3pa` b` c` dq.

Solutions
To Formerly Published Problems

‚ 5769 Proposed by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

Evaluate the limit L “ lim
nÑ8

n xn where

xn :“
sin 1

n

sin 1
n2

´ n.

Solution 1 by Charles Burnette, Xavier University of Louisiana, New Orleans, LA.

We will show that L “ ´
1
6
. First recall that for all x P R,

sinpxq “
8
ÿ

i“0

p´1qix2i`1

p2i` 1q!
.

This alternating series thus implies that for 0 ď x ď 1,

0 ď x´
1
6

x3
ď sinpxq ď x´

1
6

x3
`

1
120

x5
ď x.
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Hence, for all n ě 1,

xn ě

1
n ´

1
6n3

1
n2

´ n “ ´
1
6n

and

xn ď

1
n ´

1
6n3 `

1
120n5

1
n2 ´

1
6n6

´ n “
´n3 ` 21

20n

6n4 ´ 1
.

Therefore

´
1
6
ď nxn ď

´n4 ` 21
20n2

6n4 ´ 1

for all n ě 1. It now follows from the sandwich theorem that L “ ´
1
6
.

Solution 2 by Devis Alvarado, Tegucigalpa, Honduras.

L “ lim
nÑ8

pnxnq

“ lim
nÑ8

¨

˚

˚

˝

n

¨

˚

˝

sin
´

1
n

¯

sin
´

1
n2

¯ ´ n

˛

‹

‚

˛

‹

‹

‚

“ lim
xÑ0`

˜

1
x

ˆ

sin pxq
sin px2q

´
1
x

˙

¸

, x “
1
n
.

“ lim
xÑ0`

˜

x sin pxq ´ sin
`

x2
˘

x2 sin px2q

¸

“ lim
yÑ0`

˜

2y sin p2yq ´ sin
`

4y2
˘

4y2 sin p4y2q

¸

, x “ 2y

“ lim
yÑ0`

˜

4y sin pyq cos pyq ´ 4 sin
`

y2
˘

cos
`

y2
˘

cos
`

2y2
˘

16y2 sin py2q cos py2q cos p2y2q

¸

“
1
4

lim
yÑ0`

˜

y sin pyq cos pyq ´ sin
`

y2
˘

cos pyq ` sin
`

y2
˘

cos pyq ´ sin
`

y2
˘

cos
`

y2
˘

cos
`

2y2
˘

y2 sin py2q cos py2q cos p2y2q

¸

“
1
4

lim
yÑ0`

˜

y sin pyq ´ sin
`

y2
˘

y2 sin py2q
¨

cos pyq
cos py2q cos p2y2q

¸

`
1
4

lim
yÑ0`

˜

cos pyq ´ cos
`

y2
˘

cos
`

2y2
˘

y2 ¨
1

cos py2q cos p2y2q

¸

“
1
4

L´
1
8

ñ L “ ´
1
6
.
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lim
yÑ0`

˜

cos pyq ´ cos
`

y2
˘

cos
`

2y2
˘

y2

¸

“ lim
yÑ0`

˜

´ sin pyq ´ 2y sin
`

y2
˘

cos
`

2y2
˘

´ 4y cos
`

y2
˘

sin
`

2y2
˘

2y

¸

“ lim
yÑ0`

ˆ

´
sin pyq

2y
´ sin

´

y2
¯

cos
´

2y2
¯

` 2 cos
´

y2
¯

sin
´

2y2
¯

˙

“ ´
1
2
.

Solution 3 by Ilkin Hasanov ADA University. Baku, Azerbaijan.

Set
1
n
“ a. Then n Ñ 8 ðñ a Ñ 0. So

L “ lim
nÑ8

n xn “ lim
nÑ8

˜

n ¨
sin 1

n

sin 1
n2

´ n2

¸

“ lim
aÑ0

ˆ

1
a
¨

sin a
sin a2 ´

1
a2

˙

Expressing the Taylor series for sin a and sin a2, we have

sin a “ a´
a3

3!
`

a5

5!
´

a7

7!
` . . .

and

sin a2
“ a2

´
a6

3!
`

a10

5!
´

a14

7!
` . . .

Using the latter, we write

L “ lim
aÑ0

ˆ

1
a
¨

sin a
sin a2 ´

1
a2

˙

“ lim
aÑ0

´

a´ a3

3! `
a5

5! ´
a7

7! ` . . .
¯

´

´

a´ a5

3! `
a9

5! ´
a13

7! ` . . .
¯

a3
´

1´ a4

3! `
a8

5! ´
a12

7! ` . . .
¯

“ lim
aÑ0

´

´ 1
3! `

a2

5! ´
a4

7! ` . . .
¯

`

´

a2

3! ´
a6

5! `
a10

7! ´ . . .
¯

1´ a4

3! `
a8

5! ´
a12

7! ` . . .
“
´1

6

1
“ ´

1
6
.

Solution 4 by David A. Huckaby, Angelo State University, San Angelo, TX.

We rewrite

xn “
sin 1

n

sin 1
n2

´ n “
sin 1

n ´ n sin 1
n2

sin 1
n2

.

Now sin
1
n
“

1
n
´

1
6n3 `

1
120n5 `Op

1
n7 q, sin

1
n2 “

1
n2 ´

1
6n6 `Op

1
n10 q, and n sin

1
n2 “

1
n
´

1
6n5 `

Op
1
n9 q. So sin

1
n
´ n sin

1
n2 “ ´

1
6n3 `

7
40n5 ` Op

1
n7 q. Thus
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L “ lim
nÑ8

nxn “ lim
nÑ8

n
´ 1

6n3 `
7

40n5 ` Op
1
n7 q

1
n2 ´

1
6n6 ` Op

1
n10 q

“ lim
nÑ8

´ 1
6n2 `

7
40n4 ` Op

1
n6 q

1
n2 ´

1
6n6 ` Op

1
n10 q

“ ´
1
6
.

Solution 5 by Anthony Batiste (student) and the Eagle Problem Solvers, Georgia Southern
University, Savannah, GA and Statesboro, GA.

L “ ´
1
6

.

Let u “
1
n

, so that u Ñ 0` as n Ñ 8. Using l’Hospital’s Rule four times, we see that

L “ lim
nÑ8

n sin 1
n

sin 1
n2

´ n2

“ lim
uÑ0`

u sin u´ sin u2

u2 sin u2

“ lim
uÑ0`

u cos u` sin u´ 2u cos u2

2u3 cos u2 ` 2u sin u2

“ lim
uÑ0`

2 cos u´ u sin u` 4u2 sin u2 ´ 2 cos u2

´4u4 sin u2 ` 10u2 cos u2 ` 2 sin u2

“ lim
uÑ0`

´3 sin u´ u cos u` 12u sin u2 ` 8u3 cos u2

´8u5 cos u2 ´ 36u3 sin u2 ` 24u cos u2

“ lim
uÑ0`

´4 cos u` u sin u` 12 sin u2 ` 48u2 cos u2 ´ 16u4 sin u2

16u6 sin u2 ´ 112u4 cos u2 ´ 156u2 sin u2 ` 24 cos u2

“
´4
24

“ ´
1
6
.

Solution 6 by Henry Ricardo, Westchester Area Math Circle, Purchase, NY.

We have

sin 1
n

sin 1
n2

“

1
n ´

1
6n3 ` O

´

1
n5

¯

1
n2 ´

1
6n5 ` O

´

1
n10

¯ “ n´
1

6n
` O

ˆ

1
n3

˙

,

n

˜

sin 1
n

sin 1
n2

´ n

¸

“ ´
1
6
` O

ˆ

1
n2

˙

,

which has the limit ´1{6 as n Ñ 8.
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Solution 7 by Michel Bataille, Rouen, France.

We have

nxn “
n

sin 1
n2

ˆ

sin
1
n
´ n sin

1
n2

˙

and sin
1
n
“

1
n
´

1
6n3 ` op1{n3

q as n Ñ 8. It first follows that

n
sin 1

n2

„
n
1
n2

“ n3

and second that

sin
1
n
´ n sin

1
n2 “

1
n
´

1
6n3 ` op1{n3

q ´ n
ˆ

1
n2 ` op1{n4

q

˙

“ ´
1

6n3 ` op1{n3
q

so that sin
1
n
´ n sin

1
n2 „ ´

1
6n3 .

As a result, we obtain

nxn „ n3
¨

ˆ

´
1

6n3

˙

“ ´
1
6

and so L “ ´
1
6

.

Solution 8 by Perfetti Paolo, Universit„a di “Tor Vergata", Roma, Italy.

We know that lim
xÑ0

sin x
x
“ 1 hence

lim
nÑ8

n sin 1
n ´ n2 sin 1

n2

sin 1
n2

“ lim
nÑ8

n3 sin 1
n ´ n4 sin 1

n2

n2 sin 1
n2

“ lim
nÑ8

n3 sin
1
n
´ n4 sin

1
n2

Using sin
1
n
“

1
n
´

1
6n3 ` op

1
n4 q

n3 sin
1
n
´ n4 sin

1
n2 “ n3

ˆ

1
n
´

1
6n3 ` op

1
n4 q

˙

´ n4

ˆ

1
n2 ´

1
6n6 ` op

1
n8 q

˙

“

“
´1
6
` op

1
n
q Ñ

´1
6

Solution 9 by Péter Fülöp, Gyömrő, Hungary.

Let’s start from the Taylor series of sinpxq :

6



sinp
1
n
q “

8
ÿ

k“0

p´1qk

p2k ` 1q!

´1
n

¯2k`1

sinp
1
n2 q “

8
ÿ

k“0

p´1qk

p2k ` 1q!

´ 1
n2

¯2k`1

So the limit is as follows

L “ lim
nÑ8

n
´

1
n ´

1
6n3 `

8
ř

k“2

p´1qk

p2k ` 1q!

´1
n

¯2k`1¯

1
n2 ´

1
6n6 `

8
ř

k“2

p´1qk

p2k ` 1q!

´ 1
n2

¯2k`1
´ n2

After removing out the
1
n2 terms from all parts of the denominator and

1
n3 from the sum of the

numerator, we get:

L “ lim
nÑ8

n
´

1
n ´

1
6n3 `

1
n3

8
ř

k“2

p´1qk

p2k ` 1q!

´1
n

¯2k´2¯

1
n2

´

1´ 1
6n4 `

8
ř

k“2

p´1qk

p2k ` 1q!

´ 1
n2

¯2k´1¯
´ n2

Performing further transmissions:

L “ lim
nÑ8

n2 ´ 1
6 `

8
ř

k“2

p´1qk

p2k ` 1q!

´1
n

¯2k´2
´n2 ` 1

6n2 ´
8
ř

k“2

p´1qk

p2k ` 1q!

´ 1
n2

¯2k

1´ 1
6n4 `

8
ř

k“2

p´1qk

p2k ` 1q!

´ 1
n2

¯2k´1

If n Ñ 8 then all sums are go to zero, the n2 terms are cancelled.

The value of the limit is

L “ lim
nÑ8

nxn “ ´
1
6

.

Solution 10 by Yunyong Zhang, Chinaunicom, Yunnan, China.

We have the Taylor expansions:

sin
1
n
“

1
n
´

1
6n3 `

1
120n5 ` ¨ ¨ ¨ ,

sin
1
n2 “

1
n2 ´

1
6n6 `

1
120n10

` ¨ ¨ ¨ .
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∴
sin 1

n

sin 1
n2

“ n´
1

6n
`

7
40n3 ` ¨ ¨ ¨ ,

∴ L “ lim
nÑ8

np´
1

6n
`

7
40n3 ` ¨ ¨ ¨ q “ ´

1
6

.

Also solved by Hong Biao Zeng, Fort Hays State University, Hays, KS and the problem pro-
poser.

‚ 5770 Proposed by Daniel Sitaru, National Economic College "Theodor Costescu" Drobeta Turnu
- Severin, Romania.

Suppose a, b P C with |a2
` 1| ď 1, |a4

` 1| ď 1, |b3
` 1| ď 1, |b6

` 1| ď 1. Prove that

|a` b|2 ` |a´ b|2 ď 4

Solution 1 by Michel Bataille, Rouen, France.

We have |a ` b|2 “ pa ` bqpa ` bq “ |a|2 ` ab ` ab ` |b|2 and |a ´ b|2 “ |a|2 ´ ab ´ ab ` |b|2,
hence |a` b|2 ` |a´ b|2 “ 2p|a|2 ` |b|2q. Thus, it suffices to show that |a|2 ` |b|2 ď 2 or even that
|a| ď 1 and |b| ď 1.
If 2|a|2 ď 1, then certainly |a| ď 1. If 2|a|2 ě 1, then using the triangular inequality, we see that

1 ě |a4
` 1| “ |pa2

` 1q2 ´ 2a2
| ě

ˇ

ˇ

ˇ
|a2
` 1|2 ´ 2|a|2

ˇ

ˇ

ˇ
“ 2|a|2 ´ |a2

` 1|2

so that 2 ě 1` |a2
` 1|2 ě 2|a2

| “ 2|a|2 and |a| ď 1 follows.
Similarly, we have |b| ď 1 if 2|b|3 “ |2b3

| ď 1. If |2b3
| ě 1, then, as above,

1 ě |b6
` 1| “ |pb3

` 1q2 ´ 2b3
| ě

ˇ

ˇ

ˇ
|b3
` 1|2 ´ |2b3

|

ˇ

ˇ

ˇ
“ |2b3

| ´ |b3
` 1|2

hence 2 ě 1` |b3
` 1|2 ě 2|b|3 and |b| ď 1 follows.

In any case, we have |a| ď 1 and |b| ď 1.

Also solved by the problem proposer.

‚ 5771 Proposed by Goran Conar, Varaždin, Croatia.

Suppose x1, x2, . . . , xn ě e. Prove

n
7
ą

n
ÿ

j“1

x j

1` x3
j

ą
n
2

¨

˝

n
ź

j“1

x j

˛

‚

´2{n

.
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Solution 1 by Devis Alvarado, Tegucigalpa, Honduras.

If x ě e, then x2
´ 7 ą 0 ñ x3

´ 7x` 1 ą 0 ñ
x

1` x3 ă
1
7
,

n
ÿ

j“1

x j

1` x3
j

ă

n
ÿ

j“1

1
7
“

n
7
.

If x ě e ñ x3
ą 1 ñ 2x3

ą 1` x3
ñ

2x
1` x3 ą

1
x2 , then

n
ÿ

j“1

2x j

1` x3
j

ą

n
ÿ

j“1

1
x2

j

ě n n

g

f

f

e

n
ź

j“1

˜

1
x2

j

¸

“ n

¨

˝

n
ź

j“1

x j

˛

‚

´ 2
n

ñ

n
ÿ

j“1

x j

1` x3
j

ą
n
2

¨

˝

n
ź

j“1

x j

˛

‚

´ 2
n

Solution 2 by Charles Burnette, Xavier University of Louisiana, New Orleans, LA.

For the leftmost inequality, note that because each x2
j ě e2

« 7.389 ą 7,

n
ÿ

j“1

x j

1` x3
j

ă

n
ÿ

j“1

x j

x3
j

“

n
ÿ

j“1

1
x2

j

ă

n
ÿ

j“1

1
7
“

n
7
.

As for the rightmost inequality, first observe that

n
ÿ

j“1

x j

1` x3
j

ą

n
ÿ

j“1

x j

x3
j ` x3

j

“
1
2

n
ÿ

j“1

1
x2

j

.

Now apply the AM-GM inequality to conclude that

n
ÿ

j“1

x j

1` x3
j

ą
1
2

ÿ

x´2
j

ą
n
2

n

g

f

f

e

n
ź

j“1

x´2
j “

n
2

¨

˝

n
ź

j“1

x j

˛

‚

´2{n

.
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Solution 3 by Michel Bataille, Rouen, France.

Let f pxq “
x

1` x3 . The derivative f 1pxq “
1´ 2x3

p1` x3q2
is negative for x ě e, hence the function f is

strictly decreasing on re,8q and f pxq ď f peq “
e

1` e3 ă
1
7

whenever x ě e. In consequence

n
ÿ

j“1

x j

1` x3
j

ă n ¨
1
7

and the left inequality follows.
Now, let gpxq “ f pex

q (for x ě 1). A simple calculation shows that

g2pxq “ ex
p1` e3x

q
´3
p4e6x

´ 13e3x
` 1q.

Since e3x
ě e3

ą
13`

?
153

8
, we see that g2pxq ą 0 for x ě 1 and therefore g is convex on the

interval r1,8q.
Since lnpx jq P r1,8q for j “ 1, . . . , n, Jensen’s inequality yields

n
ÿ

j“1

x j

1` x3
j

“

n
ÿ

j“1

elnpx jq

1` e3 lnpx jq
“

n
ÿ

j“1

gplnpx jqq ě n ¨
es{n

1` e3s{n

where s “
n
ÿ

j“1

lnpx jq “ lnppq (setting p “
n
ź

j“1

x j). Thus, we have

n
ÿ

j“1

x j

1` x3
j

ě n ¨
p1{n

1` p3{n
“ n f pp1{n

q.

But, for x ě e the inequality f pxq ą
1

2x2 holds (as being equivalent to x3
ą 1), hence f pp1{n

q ą

1
2
¨ p´2{n so that

n
ÿ

j“1

x j

1` x3
j

ą
n
2

p´2{n

(the right inequality) holds.

Solution 4 by Perfetti Paolo, Universit„a di “Tor Vergata", Roma, Italy.

ˆ

x
1` x3

˙

“ě
1

2x2 ðñ x3
ě 1
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hence
n
ÿ

j“1

x j

1` x3
j

ě
1
2

n
ÿ

j“1

1
x2 ě

loomoon

AGM

n
2

¨

˝

n
ź

j“1

x j

˛

‚

´2{n

L.h.s.
p1` x3

´ 7xq1 “ 3x2
´ 7 ě 0 ðñ x ě

b

7{3 “ 2.3

Hence a fortiori it is true for x ě e. It follows
n
ÿ

j“1

x j

1` x3
j

ă

n
ÿ

j“1

x j

7x j
“

n
7

The proof is completed.

Also solved by Daniel Văcaru, National Economic College „Maria Teiuleanu”, Pites, ti, Ro-
mania and the problem proposer.

‚ 5772 Proposed by by Ovidiu Furdui and Alina Sîntămărian, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania.

For the matrix A in M2 pRq, solve the equation A3
“ A´ AT , where AT denotes the transpose

of A.

Solution 1 by the Eagle Problem Solvers, Georgia Southern University, Savannah, GA and
Statesboro, GA.

Let A “

˜

a b
c d

¸

, where a, b, c, d P R. Then

A3
“

˜

a3
` bcp2a` dq bpa2

` ad ` bc` d2
q

cpa2
` ad ` bc` d2

q d3
` bcpa` 2dq

¸

and

A´ AT
“

˜

a b
c d

¸

´

˜

a c
b d

¸

“

˜

0 b´ c
c´ b 0

¸

.

Equating entries of A3 and A´ AT , we have

a3
` bcp2a` dq “ 0 “ d3

` bcpa` 2dq (1)

and
bpa2

` ad ` bc` d2
q “ b´ c “ ´cpa2

` ad ` bc` d2
q. (2)

11



From Equations (1), we see

a3
´ d3

` bcpa´ dq “ 0

pa´ dqpa2
` ad ` bc` d2

q “ 0.

Meanwhile, from Equations (2), we get

pb` cqpa2
` ad ` bc` d2

q “ 0.

Therefore, either a2
` ad ` bc` d2

“ 0 or a´ d “ 0 “ b` c.

Case 1: If a2
` ad ` bc ` d2

“ 0, then from Equations (2), we have b ´ c “ 0. Notice that
det

`

A´ AT
˘

“ pb´ cq2 “ 0, which means 0 “ detpA3
q “ pad ´ bcq3, and ad “ bc. Thus,

0 “ a2
` ad ` bc` d2

“ a2
` 2ad ` d2

“ pa` dq2,

so that d “ ´a and 0 “ ad ´ bc “ ´a2
´ b2; thus, a “ b “ c “ d “ 0, and A is the zero matrix.

Case 2: If a ´ d “ 0 “ b ` c, then d “ a and c “ ´b. Equations (1) and (2) simplify to
a3
´ b2

p3aq “ 0 and bp3a2
´ b2

q “ 2b. Thus, apa2
´ 3b2

q “ 0 and bp3a2
´ b2

´ 2q “ 0. If a “ 0,
then bp´b2

´ 2q “ ´bpb2
` 2q “ 0, so b “ 0 and once again, A is the zero matrix. If a , 0, then

b , 0, so that a2
“ 3b2 and 2 “ 3a2

´ b2
“ 8b2; thus b “ ˘

1
2

and a “ ˘

?
3

2
. Therefore, the

complete set of solutions is given by

A P

$

’

’

&

’

’

%

˜

0 0
0 0

¸

,

¨

˚

˚

˝

?
3

2
1
2

´
1
2

?
3

2

˛

‹

‹

‚

,

¨

˚

˚

˝

?
3

2
´

1
2

1
2

?
3

2

˛

‹

‹

‚

,

¨

˚

˚

˝

´

?
3

2
1
2

´
1
2

´

?
3

2

˛

‹

‹

‚

,

¨

˚

˚

˝

´

?
3

2
´

1
2

1
2

´

?
3

2

˛

‹

‹

‚

,

/

/

.

/

/

-

.

We remark that the nonzero solutions for A are rotation matrices of the form

˜

cos θ ´ sin θ
sin θ cos θ

¸

,

where θ has a reference angle of 30˝.

Solution 2 by David A. Huckaby, Angelo State University, San Angelo, TX.

Let A “

˜

a b
c d

¸

, so that A3
“

˜

a3
` 2abc` bcd bpa2

` ad ` bc` d2
q

cpa2
` ad ` bc` d2

q d3
` 2bcd ` abc

¸

, and A ´ AT
“

˜

0 b´ c
´pb´ cq 0

¸

“ pb´ cq

˜

0 1
´1 0

¸

.

So A ´ AT is a rotation matrix multiplied by the scale factor b ´ c, and therefore so is A3, so
that A is also a rotation matrix multiplied by a scale factor.

If b ´ c “ 0 (i.e., b “ c), then A ´ AT is just the zero matrix. With A3
“ A ´ AT being the

12



zero matrix and A being a rotation matrix multiplied by a scale factor, A is also the zero matrix. So
one solution to the equation is the zero matrix (which is also clear from inspection).

Assume now that b´ c , 0. Note that since A is a rotation matrix multiplied by a scale factor, d “

a. So A3
“

˜

a3
` 2abc` bcd bpa2

` ad ` bc` d2
q

cpa2
` ad ` bc` d2

q d3
` 2bcd ` abc

¸

“

˜

a3
` 3abc bp3a2

` bcq
cp3a2

` bcq a3
` 3abc

¸

.

Equating the off-diagonal elements of A3 and A´ AT gives bp3a2
` bcq “ b´ c and cp3a2

` bcq “

´pb´ cq. Dividing the former equation by the latter yields
b
c
“

b´ c
´pb´ cq

“ ´1, so that c “ ´b.

So A´ AT
“ pb´ cq

˜

0 1
´1 0

¸

“ 2b

˜

0 1
´1 0

¸

and A3
“

˜

a3
´ 3ab2 bp3a2

´ b2
q

´bp3a2
´ b2

q a3
´ 3ab2

¸

.

Equating the upper-left elements of A3 and A´ AT yields a3
´ 3ab2

“ 0, whence apa2
´ 3b2

q “ 0,
so that a “ 0 or a “ ˘

?
3b.

We first consider the a “ 0 case. We have d “ a “ 0 so that A “ b

˜

0 1
´1 0

¸

and A3
“

b3

˜

0 ´1
1 0

¸

“ ´b3

˜

0 1
´1 0

¸

. Since A3
“ A ´ AT

“ 2b

˜

0 1
´1 0

¸

, we have ´b3
“ 2b, that is,

bpb2
´ 2q “ 0, so that b “ 0 or b “ ˘

?
2. If b “ 0, then A is the zero matrix. If b “ ˘

?
2, then

A “ b

˜

0 1
´1 0

¸

“

˜

0
?

2
´
?

2 0

¸

or A “

˜

0 ´
?

2
?

2 0

¸

. But

˜

0
?

2
´
?

2 0

¸3

“ 2

˜

0 ´
?

2
?

2 0

¸

, 2

˜

0
?

2
´
?

2 0

¸

“

˜

0
?

2
´
?

2 0

¸

´

˜

0
?

2
´
?

2 0

¸T

.

Similarly,

˜

0 ´
?

2
?

2 0

¸3

“ 2

˜

0
?

2
´
?

2 0

¸

, 2

˜

0 ´
?

2
?

2 0

¸

“

˜

0 ´
?

2
?

2 0

¸

´

˜

0 ´
?

2
?

2 0

¸T

.

So the zero matrix is the only solution to the equation A3
“ A´ AT that we have obtained so far.

We now turn to the case when a “ ˘
?

3b. If a “
?

3b, then

A “

˜

a b
c d

¸

“

˜?
3b b
´b

?
3b

¸

“ b

˜?
3 1

´1
?

3

¸

.

So A3
“ 8b3

˜

0 1
´1 0

¸

. Since A3
“ A ´ AT

“ 2b

˜

0 1
´1 0

¸

, we have 8b3
“ 2b, whence

bp4b2
´ 1q “ 0, so that b “ 0 or b “ ˘

1
2

. If b “ 0, then A is the zero matrix. If b “
1
2

, then

13



A “

¨

˚

˚

˝

?
3

2
1
2

´
1
2

?
3

2

˛

‹

‹

‚

. This matrix indeed satisfies the equation:

A3
“

˜

0 1
´1 0

¸

“

¨

˚

˚

˝

?
3

2
1
2

´
1
2

?
3

2

˛

‹

‹

‚

´

¨

˚

˚

˝

?
3

2
´

1
2

1
2

?
3

2

˛

‹

‹

‚

“ A´ AT .

With a “
?

3b and b “ ´
1
2

, then A “

¨

˚

˚

˝

´

?
3

2
´

1
2

1
2

´

?
3

2

˛

‹

‹

‚

and

A3
“

˜

0 ´1
1 0

¸

“

¨

˚

˚

˝

´

?
3

2
´

1
2

1
2

´

?
3

2

˛

‹

‹

‚

´

¨

˚

˚

˝

´

?
3

2
1
2

´
1
2

´

?
3

2

˛

‹

‹

‚

“ A´ AT .

If a “ ´
?

3b, then

A “ b

˜

´
?

3 1
´1 ´

?
3

¸

.

So A3
“ 8b3

˜

0 1
´1 0

¸

. As above, since A3
“ A ´ AT

“ 2b

˜

0 1
´1 0

¸

, we again have 8b3
“ 2b

and hence again either b “ 0 (the zero matrix case) or b “ ˘
1
2

. With a “ ´
?

3b and b “
1
2

,

A “

¨

˚

˚

˝

´

?
3

2
1
2

´
1
2

´

?
3

2

˛

‹

‹

‚

and

A3
“

˜

0 1
´1 0

¸

“

¨

˚

˚

˝

´

?
3

2
1
2

´
1
2

´

?
3

2

˛

‹

‹

‚

´

¨

˚

˚

˝

´

?
3

2
´

1
2

1
2

´

?
3

2

˛

‹

‹

‚

“ A´ AT .

With a “ ´
?

3b and b “ ´
1
2

, A “

¨

˚

˚

˝

?
3

2
´

1
2

1
2

?
3

2

˛

‹

‹

‚

and

A3
“

˜

0 ´1
1 0

¸

“

¨

˚

˚

˝

?
3

2
´

1
2

1
2

?
3

2

˛

‹

‹

‚

´

¨

˚

˚

˝

?
3

2
1
2

´
1
2

?
3

2

˛

‹

‹

‚

“ A´ AT .
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So the five solutions to the equation A3
“ A´ AT are

˜

0 0
0 0

¸

,

¨

˚

˚

˝

?
3

2
1
2

´
1
2

?
3

2

˛

‹

‹

‚

,

¨

˚

˚

˝

´

?
3

2
´

1
2

1
2

´

?
3

2

˛

‹

‹

‚

,

¨

˚

˚

˝

´

?
3

2
1
2

´
1
2

´

?
3

2

˛

‹

‹

‚

, and

¨

˚

˚

˝

?
3

2
´

1
2

1
2

?
3

2

˛

‹

‹

‚

.

Solution 3 by Michel Bataille, Rouen, France.

Let O2 and I2 denote the zero matrix and the unit matrix ofM2pRq and let A0 “
1
2
¨

˜?
3 1

´1
?

3

¸

.

It is readily checked that O2, A0, ´A0, AT
0 , ´AT

0 are solutions. We will show that there are no other
solutions.

Let A be an arbitrary solution and let t and δ denote its trace and its determinant, respectively.
From the Hamilton-Cayley theorem (or directly) we have A2

“ tA´ δI2, hence

A´ AT
“ A3

“ tA2
´ δA “ tptA´ δI2q ´ δA “ pt2

´ δqA´ tδI2.

From pA3
q

T
“ AT

´ A “ ´A3, we then deduce that pt2
´ δqAT

´ tδI2 “ ´pt2
´ δqA` tδI2 so that

pt2
´ δqpA` AT

q “ 2tδI2.
Suppose that δ “ t2. Then, δt “ 0 , hence t “ δ “ 0. It follows that A2

“ O2, hence A3
“ O2 and

A “ AT . Therefore A must be of the form

˜

a b
b ´a

¸

and δ “ ´a2
´ b2. Since δ “ 0, we see that

a “ b “ 0. Thus A “ O2.
Suppose that δ , t2. From the expressions of A` AT and A´ AT found earlier, we readily obtain

Ap2` δ´ t2
q “

tδ
t2 ´ δ

¨ p2` δ´ t2
qI2.

If t2 , δ` 2, then A “

˜

a 0
0 a

¸

for some real a and A3
“ A´ AT gives a “ 0, hence A “ O2.

If t2
“ δ ` 2, then A ` AT

“ tδI2, which, setting A “

˜

a b
c d

¸

, yields a “ d “
tδ
2

and b ` c “ 0

so that t “ a ` d “ tδ. Note that t , 0 since otherwise a “ d “ 0 so that δ “ b2, contradicting

δ “ ´2. Therefore δ “ 1, hence t2
“ 3 and a “ d “

t
2

. Since 1 “ δ “
t2

4
` b2, we obtain

b2
“

1
4

. Thus, a “ ˘

?
3

2
, b “ ˘

1
2

and A must be one of the four matrices A0, ´A0, AT
0 , ´AT

0 .
This completes the proof.
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Also solved by Yunyong Zhang, Chinaunicom, Yunnan, China; Srikanth Pai, Mudhitha
Maths Academy, Bangalore, India and the problem proposer.

‚ 5773 Proposed by Vasile Mircea Popa, Lucian Blaga University, Sibiu, Romania.

Calculate the following integral

I “
ż 1

0

x ln2 x
x3 ` x

?
x` 1

dx.

Solution 1 by Yunyong Zhang, Chinaunicom, Yunnan, China.

Let y “
?

x, then dy “
1

2
?

x
dx, dx “ 2

?
xdy, x “ y2.

I “
ż 1

0

y2 ln2 y2

y6 ` y3 ` 1
2ydy “ 8

ż 1

0

y3 ln2 y
1` y3 ` y6 dy,

“ 8
ż 1

0

y3p1´ y3q ln2 y
1´ y9 dy,

“ 8
ż 1

0
py3
´ y6

q ln2 y
8
ÿ

n“0

y9ndy,

“ 8
8
ÿ

n“0

ż 1

0

´

y9n`3 ln2 y´ y9n`6 ln2 y
¯

dy,

“ 8
8
ÿ

n“0

„

2
p9n` 4q3

´
2

p9n` 7q3



,

“ 16
8
ÿ

n“0

„

1
p9n` 4q3

´
1

p9n` 7q3



,

« 16ˆ 0.012965 « 0.20744.
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Solution 2 by Prakash Pant, Mathematics Initiatives in Nepal, Bardiya, Nepal.

I “
ż 1

0

x ln2
pxq

px
3
2 q2 ` x

3
2 ` 1

dx

Multiplying numerator and denominator by p1´ x
3
2 q,

I “
ż 1

0

x ln2
pxqp1´ x

3
2 q

p1´ x
9
2 q

dx

Since |x
9
2 | ă 1 as x goes from 0 to 1 , we can use infinite geometric series expansion,

I “
ż 1

0
x ln2

pxqp1´ x
3
2 q

8
ÿ

n“0

x
9n
2 dx

Taking constants inside the sum and interchanging sum and interval using dominated convergence
theorem,

I “
8
ÿ

n“0

ż 1

0
x ln2

pxqp1´ x
3
2 qx

9n
2 dx “

8
ÿ

n“0

ż 1

0

´

ln2
pxqx

9n
2 `1

´ ln2
pxqx

9n
2 `

5
2

¯

dx

Using
ż 1

0
lnn
pxqxmdx “ p´1qn

Γpn` 1q
pm` 1qn`1 ,

I “
8
ÿ

n“0

Γp3q
p9n

2 ` 2q3
´

Γp3q
p9n

2 `
7
2q

3
“

8
729

8
ÿ

n“0

2
pn` 4

9q
3
´

2
pn` 7

9q
3

Using ψ2pxq “
8
ÿ

n“0

´2
pn` xq3

,

I “
8

729

ˆ

ψ2p
7
9
q ´ ψ2p

4
9
q

˙

“ 0.20744

Solution 3 by Péter Fülöp, Gyömrő, Hungary.

Let’s substitute x by y
2
3 where

dx
dy
“

2
3

y´
1
3 , we get: I “

´2
3

¯3
1
ż

0

y
1
3 ln2

pyq
y2 ` y` 1

dy

By y2
` y` 1 “

y3 ´ 1
y´ 1

: I “
´2

3

¯3
1
ż

0

y
4
3 ln2

pyq
y3 ´ 1

dy´
´2

3

¯3
1
ż

0

y
1
3 ln2

pyq
y3 ´ 1

dy

17



Performing the following substitution: y3
“ z and

dx
dy
“

1
3

y´
2
3

I “
´2

9

¯3
1
ż

0

z´
2
9 ln2

pzq
z´ 1

dz´
´2

9

¯3
1
ż

0

z´
5
9 ln2

pzq
z´ 1

dz

Known the integral representation of the m-ordered polygamma function:

ψpmqpzq “ ´

1
ż

0

tz´1lnmpzq
1´ t

dt

The result is the following:

I “
´2

9

¯3”

ψp2qp
7
9
q ´ ψp2qp

4
9
q

ı

« 0.2074404480426

was determined by WolframAlpha.

Solution 4 by Devis Alvarado, Tegucigalpa, Honduras.

I “

ż 1

0

x ln2
pxq

x3 ` x
?

x` 1
dx

“ 8
ż 8

0

y2e´4y

e´6y ` e´3x ` 1
dy, y “ ´

1
2

lnpxq ñ dx “ ´2e´2ydy

“ 8
ż 8

0

y2e´4y
`

1´ e´3y
˘

1´ e´9y dy

“ 8
ż 8

0
y2e´4y

´

1´ e´3y
¯

˜

8
ÿ

k“0

e´9ky

¸

dy

“ 8
8
ÿ

k“0

ż 8

0

ˆ

y2
´

1´ e´3y
¯

e´p9k`4qy

˙

dy

“ 8
8
ÿ

k“0

ż 8

0

´

y2e´p9k`4qy
´ y2e´p9k`7qy

¯

dy

“ 8
8
ÿ

k“0

ˆ

2
p9k ` 4q3

´
2

p9k ` 7q3

˙

“ ´
8
93ψ

p2q

ˆ

4
9

˙

`
8
93ψ

p2q

ˆ

7
9

˙

“
8

729

˜

ψp2q
ˆ

7
9

˙

´ ψp2q
ˆ

4
9

˙

¸
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where ψp2q pzq is funtion trigamma

ψp2q pzq “ ´

8
ÿ

k“0

2
pk ` zq3

“
d3

dz3 lnpΓpzqq.

Solution 5 by Henry Ricardo, Westchester Area Math Circle, Purchase, NY.

In the following solution, we use p1q the fact that
ż 1

0
xa ln2 x dx “ 2{pa ` 1q3, a ą ´1, and

p2q the definition of the polygamma function, ψ2pxq “ ´2
8
ÿ

n“0

1{pn` xq3. We have

I x ÞÑ y2{3

“
8

27

ż 1

0

y1{3 ln2 y
y2 ` y` 1

dy “
8
27

ż 1

0

p1´ yqy1{3 ln2 y
1´ y3 dy

“
8

27

˜

ż 1

0

y1{3 ln2 y
1´ y3 dy ´

ż 1

0

y4{3 ln2 y
1´ y3 dy

¸

“
8

27

˜

ż 1

0

8
ÿ

n“0

y3n`1{3 ln2 y dy ´
ż 1

0

8
ÿ

n“0

y3n`4{3 ln2 y dy

¸

“
8

27

˜

8
ÿ

n“0

ż 1

0
y3n`1{3 ln2 y dy ´

8
ÿ

n“0

ż 1

0
y3n`4{3 ln2 y dy

¸

p1q
“

8
27

˜

8
ÿ

n“0

2
p3n` 4{3q3

´

8
ÿ

n“0

2
p3n` 7{3q3

¸

“
8

p27q2

˜

8
ÿ

n“0

2
pn` 4{9q3

´

8
ÿ

n“0

2
pn` 7{9q3

¸

p2q
“

8
p27q2

`

´ψ2p4{9q ` ψ2p7{9q
˘

« 0.20744.

Alternatively, we can write the solution in terms of Hurwitz’s function:

I “
16
p27q2

`

ζp3, 4{9q ´ ζp3, 7{9q
˘

.

Solution 6 by Perfetti Paolo, dipartimento di matematica Universit„a di “Tor Vergata", Roma,
Italy.

The substitution x “ t2 yields

I “ 8
ż 1

0

t3 ln2 t dt
t6 ` t3 ` 1

“ 8
ż 1

0

pt3 ´ 1qt3 ln2 t dt
pt3 ´ 1qpt6 ` t3 ` 1q

“ 8
ż 1

0

p´t3 ` 1qt3 ln2 t dt
1´ t9 “

“ 8
8
ÿ

k“0

ż 1

0
p´t3

` 1qt3t9k ln2 t dt “ 8
8
ÿ

k“0

ż 1

0
pt9k`3

´ t9k`6
q ln2 t dt “

“ 16
8
ÿ

k“0

ˆ

1
p9k ` 4q3

´
1

p9k ` 7q3

˙

“
´16
1458

ˆ

Ψp2qp
4
9
q ´ Ψp2qp

7
9
q

˙

.
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Also solved by Bruno Salgueiro Fanego, Viveiro, Lugo and the problem proposer.

‚ 5774 Proposed by Toyesh Prakash Sharma (Student) St. C.F Andrews School, Agra, India.

If x P
“

0, π{2
‰

, then show that

´

sin2 x
¯cos2 x

`

´

cos2 x
¯sin2 x

ď
3
2
.

Solution 1 by Henry Ricardo, Westchester Area Math Circle, Purchase, NY.

Noting that the inequality holds for x “ 0 and x “ π{2, we shall assume that x P p0, 1q and
use Bernoulli’s inequality:

p1` xqα ă 1` αx for all α P p0, 1q and x ą ´1, x , 0.

Setting X “ sin2 x and α “ 1´ X, we get

X1´X
“
`

1` pX ´ 1q
˘1´X

ă 1` p1´ XqpX ´ 1q “ 2X ´ X2 (3)

and

p1´ XqX “ p1` p´XqqX ă 1` Xp´Xq “ 1´ X2. (4)

Adding p1q and p2q, we obtain

psin2 xqcos2 x
` pcos2 xqsin2 x

“ X1´X
` p1´ XqX ă 1` 2X ´ 2X2.

An elementary calculus computation yields max
0ăXă1

p1`2X´2X2
q “ 3{2, attained when X “ 1{2, or

x “ π{4. However, the maximum value attained by the left-hand function is actually 2
ˆ

1
2

˙1{2

“

?
2 ă 3{2.

Solution 2 by Charles Burnette, Xavier University of Louisiana, New Orleans, LA.

We will prove the stronger statement that the function f pxq “
´

sin2x
¯cos2 x

`

´

cos2x
¯sin2 x

has a

maximum value of
?

2 on the interval r0, π{2s, which is attained when x “ π{4. First note that

f pxq “
´

sin2x
¯1´sin2 x

`

´

cos2x
¯1´cos2 x

“

´

sin2x
¯

g
´

sin2x
¯

`

´

cos2x
¯

g
´

cos2x
¯

20



where gptq “ t´t
“ e´t ln t, which is defined for t ě 0. (For the sake of convenience, we define

gp0q :“ lim
tÑ0`

gptq “ 1.) Observe that

g1ptq “ e´t ln t
p´ ln t ´ 1q “ ´t´t

pln t ` 1q,

which is negative on p1{e,8q. Furthermore,

g2ptq “ t´t
pln t ` 1q2 ´ t´t´1

“ t´t´1
”

tpln t ` 1q2 ´ 1
ı

.

Now if we set hptq “ tpln t ` 1q2, then

h1ptq “ pln t ` 1q2 ` 2pln t ` 1q “ pln t ` 1qpln t ` 3q.

Hence h is increasing on p0, 1{e3
q Y p1{e,8q and decreasing on p1{e3, 1{eq. Since hp1{e3

q “ 4{e3,
hp1{eq “ 0, and hp1q “ 1, we can conclude that hptq ď 1 for 0 ď t ď 1. Consequently, g2ptq ď 0
on r0, 1s, which implies that g is concave down over this interval. Because the nonnegative weights
sin2x and cos2x sum to 1, we may invoke Jensen’s inequality to find that

f pxq ď g
´

sin2x ¨ sin2x` cos2x ¨ cos2x
¯

“

´

sin4x` cos4x
¯´psin4 x`cos4 xq

.

Let us now consider one final function Fpxq “ sin4x` cos4x. Note that

F 1pxq “ 4 sin3x cos x´ 4 cos3x sin x “ 4 sin x cos xpsin2x´ cos2xq “ ´4 sin x cos x cosp2xq,

and so the critical numbers of Fpxq are x “ nπ, x “ p2n ` 1qπ{2, and x “ p2n ` 1qπ{4, where
n P Z. Out of these, the only critical number in p0, π{2q is π{4. Comparing Fpπ{4q “ 1{2 to the
endpoint arguments Fp0q “ Fpπ{2q “ 1 shows that the minimum value of Fpxq is 1{2 on the
interval r0, π{2s. Yet 1{2 ą 1{e, and since g is decreasing on p1{e,8q, it follows that

f pxq ď g
´

sin4x` cos4x
¯

ď g
ˆ

1
2

˙

“
?

2

for 0 ď x ď π{2. Optimality thus follows from the fact that f pπ{4q “
?

2 itself.

Solution 3 by Biao Zeng, Fort Hays State University, Hays, KS.

This is equivalent to showing that for r P r0, 1s, prove that

r1´r
` p1´ rqr ď

3
2

Let f prq “ r1´r
` p1 ´ rqr, f is continuous on closed interval r0, 1s, so f has maximum value.

Calculate derivative of f on (0, 1).

f 1prq “ r1´r

ˆ

´lnr `
1´ r

r

˙

` p1´ rqr
ˆ

lnp1´ rq ´
r

1´ r

˙
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Solve equation f 1prq “ 0, we can see that r “
1
2

is a solution. It is also easy to see that if

r ą
1
2
, f 1 ă 0 and if r ă

1
2
, f 1 ą 0. So f achieve maximum when r “

1
2

. The maximum value of f

is
?

2 which is less than
3
2

.

Solution 4 by Michel Bataille, Rouen, France.

Since sin2 x ` cos2 x “ 1, one of the two non-negative numbers sin2 x, cos2 x is less than or equal

to
1
2

, say sin2 x ď
1
2

. For simplicity, let a “ sin2 x. We have to prove that a1´a
` p1´ aqa ď

3
2
.

Consider the function f pxq “ xx
“ ex ln x (with f p0q “ 1). We have f 1pxq “ p1 ` ln xqxx for

x P p0, 1s, hence the minimal value of f on r0, 1{2s is f p1{eq “ e´1{e. In particular aa
ě e´1{e and

therefore a1´a
“

a
aa ď a ¨ e1{e.

On the other hand, we have 1´ a P r1{2, 1s and

p1´ aqa “
1´ a

p1´ aq1´a
.

On r1{2, 1s, f is increasing (since
1
2
ą

1
e

), hence f p1 ´ aq ě f p1{2q “ e´pln 2q{2 and therefore

p1´ aqa ď p1´ aqepln 2q{2
“ p1´ aq

?
2.

As a result, we obtain

a1´a
` p1´ aqa ď ae1{e

` p1´ aq
?

2 “
?

2` ape1{e
´
?

2q.

To conclude, we observe that e1{e
´
?

2 ą 0 so that a1´a
` p1 ´ aqa ď

?
2 `

e1{e ´
?

2
2

and the

required result follows since
?

2`
e1{e ´

?
2

2
ă

3
2
.

Solution 5 by Perfetti Paolo, Universit„a di “Tor Vergata", Roma, Italy.

Weighted AGM xayb
ď xa` yb, a, b ě 0, a` b “ 1.

sin2 x ¨ p1´ sin2 xq ` 1 ¨ sin2 x ě
´

sin2 x
¯cos2 x

¨ 1sin2 x
“

´

sin2 x
¯cos2 x

cos2 x ¨ sin2 x` 1 ¨ p1´ sin2 xq ě
´

cos2 x
¯sin2 x

¨ 11´sin2 x
“

´

cos2 x
¯sin2 x

Hence
´

sin2 x
¯cos2 x

`

´

cos2 x
¯sin2 x

ď 2 sin2 x cos2 x` 1 “
psinp2xqq2

2
` 1 ď

3
2

or | sinp2xq| ď 1 clearly true.
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Solution 6 by Péter Fülöp, Gyömrő, Hungary.

Using the Half-angle formulaes we get:

LHS “
´1´ cosp2xq

2

¯

1` cosp2xq
2 `

´1` cosp2xq
2

¯

1´ cosp2xq
2

Let’s introduce u “
1` cosp2xq

2
notation:

LHS “ f puq “ u1´u
` p1´ uqu

where u P r0, 1s

Note that the function f puq has a local maximum in P r0, 1s domain:

It can be found by solving the f 1puq “ 0 equation:

u1´u
´1´ u

u
´ lnpuq

¯

“ p1´ uqu
´ u

1´ u
´ lnp1´ uq

¯

It can be realized the symmetry between u and 1´ u

The f 1puq “ 0 equation is exist if u “ 1´ u i.e. u “
1
2

After performing the analysis of the function we get that at u “
1
2

is a local maximum of the f puq

function in u P r0, 1s domain.

It means that x “
π

4
, put it back to the original inequalty:

LHS ď
´1

2

¯

1
2 `

´1
2

¯

1
2 “

?
2 ă

3
2

The inequality is proved with the exception of LHS “
3
2

.

Also solved by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain; Yunyong
Zhang, Chinaunicom, Yunnan, China and the problem proposer.
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Editor’s Statement: It goes without saying that the problem proposers, as well as the solution
proposers, are the élan vital of the Problems/Solutions Section of SSMJ. As the editor of this Sec-
tion of the Journal, I consider myself fortunate to be in a position to receive, compile and organize
a wealth of proposed ingenious problems and solutions intended for online publication. My un-
wavering gratitude goes to all the amazingly creative contributors. We come together from across
continents because we find intellectual value, joy and satisfaction in mathematical problems, both
in their creation as well as their solution. So that our collective efforts serve us well, I kindly ask
all contributors to adhere to the following guidelines. As you peruse below, you may construe that
the guidelines amount to a lot of work. But, as the samples show, there’s not much to do. Your
cooperation is much appreciated!

Keep in mind that the examples given below are your best guide!

Formats, Styles and Requirements

When submitting proposed problem(s) or solution(s), please send both LaTeX document and pdf
document of your proposed problem(s) or solution(s). There are ways (discoverable from the in-
ternet) to convert from Word to proper LaTeX code. Porposals without a proper LaTeX document
will not be published regrettably.

Regarding Proposed Solutions:

Below is the FILENAME format for all the documents of your proposed solution(s).

#ProblemNumber_FirstName_LastName_Solution_SSMJ

‚ FirstName stands for YOUR first name.

‚ LastName stands for YOUR last name.

Examples:
#1234_Max_Planck_Solution_SSMJ

#9876_Charles_Darwin_Solution_SSMJ

Please note that every problem number is preceded by the sign # .

All you have to do is copy the FILENAME format (or an example below it), paste it and then
modify portions of it to your specs.

Please adopt the following structure, in the order shown, for the presentation of your solution:
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1. On top of the first page of your solution, begin with the phrase:

“Proposed Solution to #**** SSMJ”

where the string of four astrisks represents the problem number.

2. On the second line, write

“Solution proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country, all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s).

3. On a new line, state the problem proposer’s name, affiliation, city and country, just as it ap-
pears published in the Problems/Solutions section.

4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.

7. Below the latter, show the entire solution of the problem.

Here is a sample for the above-stated format for proposed solutions:

Proposed solution to #1234 SSMJ

Solution proposed by Emmy Noether, University of Göttingen, Lower Saxony, Ger-
many.

Problem proposed by Isaac Newton, Trinity College, Cambridge, England.

Statement of the problem:

Compute
n
ÿ

k“0

ˆ

n
k

˙

xkyn´k.

Solution of the problem: . . . . . .
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Regarding Proposed Problems:

For all your proposed problems, please adopt for all documents the following FILENAME for-
mat:

FirstName_LastName_ProposedProblem_SSMJ_YourGivenNumber_ProblemTitle

If you do not have a ProblemTitle, then leave that component as it already is (i.e., ProblemTitle).

The component YourGivenNumber is any UNIQUE 3-digit (or longer) number you like to give
to your problem.

Examples:

Max_Planck_ProposedProblem_SSMJ_314_HarmonicPatterns

Charles_Darwin_ProposedProblem_SSMJ_358_ProblemTitle

Please adopt the following structure, in the order shown, for the presentation of your pro-
posal:

1. On the top of first page of your proposal, begin with the phrase:

“Problem proposed to SSMJ”

2. On the second line, write

“Problem proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s) if any.

3. On a new line state the title of the problem, if any.

4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.

7. Below the latter, show the entire solution of your problem.

Here is a sample for the above-stated format for proposed problems:
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Problem proposed to SSMJ

Problem proposed by Isaac Newton, Trinity College, Cambridge, England.

Principia Mathematica (ÐÝ You may choose to not include a title.)

Statement of the problem:

Compute
n
ÿ

k“0

ˆ

n
k

˙

xkyn´k.

Solution of the problem: . . . . . .

♣ ♣ ♣ Thank You! ♣ ♣ ♣
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