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This section of the Journal offers readers an opportunity to exchange interesting mathematical prob-
lems and solutions. Please email them to Prof. Albert Natian at Department of Mathematics, Los
Angeles Valley College. Please present all proposed solutions and proposed problems according to
formatting requirements delineated near the end of this document. Also, please make sure every
proposed problem or proposed solution is provided in both LaTeX and pdf documents. Thank you!

To propose problems, email them to: problems4ssma@gmail.com

To propose solutions, email them to: solutions4ssma@gmail.com

Solutions to previously published problems can be seen at ăwww.ssma.org/publicationsą.

Solutions to the problems published in this issue should be submitted before June 1, 2024.

‚ 5769 Proposed by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

Evaluate the limit L “ lim
nÑ8

n xn where

xn :“
sin 1

n

sin 1
n2

´ n.

‚ 5770 Proposed by Daniel Sitaru, National Economic College "Theodor Costescu" Drobeta Turnu
- Severin, Romania.

Suppose a, b P C with |a2
` 1| ď 1, |a4

` 1| ď 1, |b3
` 1| ď 1, |b6

` 1| ď 1. Prove that

|a` b|2 ` |a´ b|2 ď 4

‚ 5771 Proposed by Goran Conar, Varaždin, Croatia.

Suppose x1, x2, . . . , xn ě e. Prove

n
7
ą

n
ÿ

j“1

x j

1` x3
j

ą
n
2

¨

˝

n
ź

j“1

x j

˛

‚

´2{n

.

‚ 5772 Proposed by by Ovidiu Furdui and Alina Sîntămărian, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania.
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For the matrix A in M2 pRq, solve the equation A3
“ A´ AT , where AT denotes the transpose

of A.

‚ 5773 Proposed by Vasile Mircea Popa, Lucian Blaga University, Sibiu, Romania.

Calculate the following integral

I “
ż 1

0

x ln2 x
x3 ` x

?
x` 1

dx.

‚ 5774 Proposed by Toyesh Prakash Sharma (Student) St. C.F Andrews School, Agra, India.

If x P
“

0, π{2
‰

, then show that

´

sin2 x
¯cos2 x

`

´

cos2 x
¯sin2 x

ď
3
2
.

Solutions
To Formerly Published Problems

‚ 5745 Proposed by Mihaly Bencze, Braşov, Romania and Neculai Stanciu, “George Emil Palade”
School, Buzău, Romania.

For real x, solve the equation

2p2
x´1q2

` 4x
“
?

x` 2x`1
` log2

`

1`
?

x
˘

.

Solution 1 by Trey Smith, Angelo State University, San Angelo, TX.

Notice that both x “ 0 and x “ 1 are solutions to the equation. We will show that they are
the only solutions.

Since
?

x is a term in this equation, we may restrict out attention to non-negative numbers. Con-
sider the following two functions:

f pxq “ 4x
´ 2x`1, and gpxq “

?
x` log2p1`

?
xq ´ 2p2

x´1q2 .

Any solution to the original equation is a solution to the equation f pxq “ gpxq. Now

f 2pxq “ pln 4q24x
´ pln 2q22x`1

“ pln 4q24x
´ 2pln 2q22x
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“ pln 4q24x
´ pln 4qpln 2q2x

“ pln 4qrpln 4q4x
´ pln 2q2x

s ą 0

for all x ą 0. Hence f is concave up on p0,8q.

The function g is a bit more complicated.

The second derivative for
?

x is ´
1

4x3{2
which is negative on p0,8q.

The second derivative for log2p1`
?

xq is

´
1

ln 2
¨

2
?

x` 1
4x3{2p1`

?
xq2

which is negative on p0,8q.

Finally, 2p2
x´1q2 can be viewed as the composition pa ˝ b ˝ cqpxq where apxq “ 2x, bpxq “ x2, and

cpxq “ 2x
´ 1. Notice that for all three of these functions, the function itself, the first derivative of

the function, and the second derivative of the function are all positive on p0,8q. Since the second
derivative of pa ˝ b ˝ cqpxq will involve sums, products and compositions of a, b, c, and their first
and second derivatives, the second derivative will be positive on p0,8q. Consequently, g2pxq will
be negative on p0,8q, so g is concave down on that interval.

Hence the functions f and g intersect at exactly two points, so 0 and 1 are the only two solutions.

Solution 2 by David A. Huckaby, Angelo State University, San Angelo, TX.

By inspection, x “ 0 and x “ 1 are solutions. We proceed to show that there are no other so-
lutions.

Define f pxq “ 2p2
x´1q2

` 4x
´ 2x`1 and gpxq “

?
x ` log2p1 `

?
xq. Then f 1pxq “ 2x

p2x
´

1q
´

2p2
x´1q2

pln 2q2 ` ln 4
¯

ą 0 for x ą 0. Similarly, g1pxq “
?

x ln 2` 1` ln 2
2px`

?
xq ln 2

ą 0.

Clearly g2pxq “ ´
pln 2qx` 2

?
xp1` ln 2q ` 1` ln 2

4p
?

x` 1q2x3{2 ln 2
ă 0.

Now

f 2pxq “ 2p2
x´1q2`x`1

p2x
´ 1qpln 2q3

”

2x`1
p2x
´ 1q ln 2` 1

ı

` 2p2
x´1q2`2x`1

pln 2q3

` 4x
pln 4q2 ´ 2x`1

pln 2q2.

The first two terms of f 2pxq are clearly positive (for x ą 0). Note that the last two terms of f 2pxq
can be rewritten as

4x
pln 4q2 ´ 2x`1

pln 2q2 “ 2x`1
”

2x´1
pln 4q2 ´ pln 2q2

ı

.

Since
1
2
pln 4q2 ´ pln 2q2 « 0.48 ą 0, the last two terms of f 2pxq are also positive (for x ą 0) so

that f 2pxq ą 0 for x ą 0. So f 2pxq ą 0 and g2pxq ă 0 for x ą 0, so that along with the boundary
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x “ 0, there can be no more than one additional solution (since both f and g are continuous). So
x “ 0 and x “ 1 are indeed the only solutions.

Solution 3 by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

Note that the equation is only valid for x ě 0. By simple inspection, it is observed that x “ 0,
and x “ 1 are solutions of the equation. There are no more real roots of the equation. The equation
may be written equivalently as

2p2
x´1q2

` 22x
´ 2 ¨ 2x

“
?

x` log2p1`
?

xq

2p2
x´1q2

` 22x
´ 2 ¨ 2x

` 1 “ 1`
?

x` log2p1`
?

xq

2p2
x´1q2

` p2x
´ 1q2 ´ 1 “

?
x` log2p1`

?
xq.

The conclusion follows now because function f pxq “ 2p2
x´1q2

` p2x
´ 1q2 ´ 1 is convex, since

p2x
´ 1q2´1 is convex and 2p2

x´1q2 is convex for x ě 0, while function gpxq “
?

x` log2p1`
?

xq
is concave for x ě 0.

Solution 4 by Brian D. Beasley, Simpsonville, SC.

We show that the two real solutions are x “ 0 and x “ 1.

For x ě 0, let f pxq “ 2p2
x´1q2

` 4x
´
?

x ´ 2x`1
´ log2p1 `

?
xq. Then f p0q “ 0 and f p1q “ 0.

For x ą 1, 4x
ą 2x`1 and 2p2

x´1q2
ą
?

x` log2p1`
?

xq, so f pxq ą 0.

Next, we assume 0 ă x ă 1 and show that f pxq ă 0. Since x is in p0, 1q, we have 2x
´ 1 ă x and

thus

2p2
x´1q2

ă 22x´1
ă 2x.

We also observe that
?

x ą x on p0, 1q and hence

log2p1`
?

xq ą log2p1` xq ą x.

Then on p0, 1q, we obtain f pxq ă gpxq, where

gpxq “ 2x
` 4x

´ px` 2x`1
` xq “ 22x

´ 2x
´ 2x.

Next, we calculate

g1pxq “ p2 ln 2qp2x
q

2
´ pln 2q2x

´ 2.

Since g1pxq “ 0 on p0, 1q if and only if x « 0.5625, with g1pxq ă 0 on p0, 0.5625q and g1pxq ą 0
on p0.5625, 1q, we conclude that g is decreasing on the first interval and increasing on the second
interval. But gp0q “ 0 and gp1q “ 0, so gpxq ă 0 on p0, 1q. Hence f pxq ă 0 on p0, 1q as claimed.

Solution 5 by Perfetti Paolo, dipartimento di matematica Università di “Tor Vergata", Roma,
Italy.
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Evidently x “ 0 and x “ 1 are solutions and we are done if we prove the convexity of the function

f pxq “ 2p2
x´1q2

` 4x
´
?

x´ 2x`1
´

lnp1`
?

xq
ln 2

In this case indeed f would lie below the abscissa positive half axis for 0 ď x ď 1 and above for
x ě 1. Now

´p
?

xq2 “
1

4x3{2
ą 0,

˜

lnp1`
?

xq
´ ln 2

¸2

“
p1` 2

?
xq

4x3{2p1`
?

xq2 ln 2
ą 0

and
´

2p2
x´1q2

` 4x
´ 2x`1

¯2

“ 2pln 2q32p2
x´1q22x

p22x
´ 1` 2x`1

p2x
´ 1qq ě 0.

Also solved by Albert Stadler, Herrliberg, Switzerland; Bruno Salgueiro Fanego, Viveiro,
Lugo, Spain; and the problem proposer.

‚ 5746 Proposed by Problem proposed by Albert Stadler, Herrliberg, Switzerland.

Let m, n ě 1 and let pm,npxq be the polynomial defined by

pm,n pxq “ e´xm dn

dxn exm
.

Prove that for all n ě 0:

´

pxm
` ymq

n{m
¯

pm,n

´

pxm
` ymq

1{m
¯

“

n
ÿ

k“0

˜

n
k

¸

xkyn´k pm,k pxq pm,n´k pyq .

Solution 1 by Moti Levy, Rehovot, Israel.

The polynomials pm,n pxq “ e´xm dn

dxn exm
are the subject of an article by E. T. Bell (1934).

Let us rewrite the right-hand-side of the equation in the problem statement

n
ÿ

k“0

ˆ

n
k

˙

xkyn´y pm,k pxq pm,n´k pyq “ n!
n
ÿ

k“0

xk pm,k pxq
k!

yn´y pm,n´k pyq
pn´ kq!

. (1)

We define two sequences pakqkě0 and pbkqkě0 as follows:

ak :“
xk pm,k pxq

k!
, bk “

yk pm,k pyq
k!

. (2)
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We observe that
n
ÿ

k“0

xk pm,k pxq
k!

yn´y pm,n´k pyq
pn´ kq!

is convolution of the sequences pakqkě0 and pbkqkě0 ,

n
ÿ

k“0

xk pm,k pxq
k!

yn´y pm,n´k pyq
pn´ kq!

“

n
ÿ

k“0

akbn´k. (3)

The generating functions of the sequences pakqkě0 and pbkqkě0 are:

A pzq “
8
ÿ

k“0

akzk
“

8
ÿ

k“0

xk pm,k pxq
k!

zk
“

8
ÿ

k“0

pm,k pxq
k!

pxzqk ,

B pzq “
8
ÿ

k“0

bkzk
“

8
ÿ

k“0

yk pm,k pyq
k!

zk
“

8
ÿ

k“0

pm,k pyq
k!

pyzqk .

The generating function of the sequence pcnqně0 , where cn “

n
ÿ

k“0

akbn´k is

C pzq “ A pzq B pzq .

Now let us find the closed form of the exponential generating function Pm pzq of the sequence
`

pm,k pxq
˘

kě0 ,

Pm pzq “
8
ÿ

k“0

pm,k pxq
k!

zk
“ e´xm

8
ÿ

k“0

˜

dk

dxk exm

¸

zk

k!
. (4)

Since
dk

dzk epz`xqm
“

dk

dxk epz`xqm ,

then
dk

dxk exm
“

dk

dzk epz`xqm

ff

z“0

. (5)

Plugging (5) into (4) we get

Pm pzq “ e´xm
8
ÿ

k“0

dk

dzk epz`xqm

ff

z“0

zk

k!
,

hence by Taylor’s theorem, we obtain

Pm pzq “ e´xm
epz`xqm . (6)

It follows that
A pzq “ Pm pxzq “ e´xm

epz`xqm
“ e´xm

exmpz`1qm , (7)

and that
B pzq “ Pm pyzq “ e´ym

epz`yqm
“ e´ym

eympz`1qm . (8)

By (7) and (8)
C pzq “ e´px

m`ymqepx
m`ymqpz`1qm .
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The convolution implies that rznsC pzq , i.e., the coefficient of zn of C pzq is equal to
n
ÿ

k“0

xk pm,k pxq
k!

yn´y pm,n´k pyq
pn´ kq!

.

Now by Taylor’s theorem applied to C pzq,

C pzq “ e´px
m`ymq

8
ÿ

k“0

dk

dzk epx
m`ymqpz`1qm

ff

z“0

zk

k!
. (9)

Since
dk

dzk epαz`βqm

ff

z“0

“ αk dk

dzk ezm

ff

z“β

,

then
dk

dzk e

ˆ

pxm`ymq
1
m z`pxm`ymq

1
m

˙mff

z“0

“ pxm
` ymq

k
m

dk

dzk ezm

ff

z“pxm`ymq
1
m

rznsC pzq “
1
n!
pxm

` ymq
n
m e

´

ˆ

pxm`ymq
1
m

˙m

dn

dzn ezm

ff

z“pxm`ymq
1
m

“
1
n!
pxm

` ymq
n
m pn,m

´

pxm
` ymq

1
m

¯

We conclude that
n
ÿ

k“0

xk pm,k pxq
k!

yn´y pm,n´k pyq
pn´ kq!

“
1
n!
pxm

` ymq
n
m pn,m

´

pxm
` ymq

1
m

¯

. �

Solution 2 by Ulrich Abel, Technische Hochschule Mittelhessen, Friedberg, Germany.

Choose reals x, y ą 0 with x , y. We start with the RHS of the claim. Application of the Cauchy
integral formula yields that

exm`ym
RHS “

n
ÿ

k“0

ˆ

n
k

˙

xkyn´k k!
2πi

ż

BD1pxq

e´wm

pw´ xqk`1 dw
k!

2πi

ż

BD2pyq

e´zm

pz´ yqn´k`1 dz

“
n!

p2πiq2

ż

BD1pxq

ż

BD2pyq

n
ÿ

k“0

xk

pw´ xqk`1

yn´k

pz´ yqn´k`1 e´wm´zm
dzdw,

where D1 pxq “
 

w | |w´ x| ă r1
(

and D2 pyq “
 

z | |z´ y| ă r2
(

with r1, r2 ą 0 such that
D1 pxq X D2 pyq “ ∅. Evaluation of the geometric series yields

n
ÿ

k“0

xk

pw´ xqk`1

yn´k

pz´ yqn´k`1 “
1

pw´ xqn`1
pz´ yqn`1

`

x pz´ yq
˘n`1

´
`

y pw´ xq
˘n`1

x pz´ yq ´ y pw´ xq
.
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The denominator of the latter fraction can be rewritten in the form xz´ yw. We write exm`ym
RHS “

n!

p2πiq2
pI1 ` I2q, where

I1 “

ż

BD1pxq

ż

BD2pyq

1

pw´ xqn`1
pz´ yqn`1

`

x pz´ yq
˘n`1

xz´ yw
e´wm´zm

dzdw

and

I2 “

ż

BD1pxq

ż

BD2pyq

1

pw´ xqn`1
pz´ yqn`1

´
`

y pw´ xq
˘n`1

xz´ yw
e´wm´zm

dzdw.

We can choose r2 ą 0 so small that there exists a region G Ą D1 pxq such that xz ´ yw , 0, for all
w P G and z P BD2 pyq. After interchanging the order of both integrals, we conclude that

I1 “ xn`1
ż

BD2pyq

1

pw´ xqn`1

˜

ż

BD1pxq

1
xz´ yw

e´wm´zm
dw

¸

dz “ 0

because the inner integral vanishes by the Cauchy Integral Theorem. Two applications of the
Cauchy Integral Formula to the second integral yield

I2 “

ż

BD2pyq

1

pz´ yqn`1

˜

ż

BD1pxq

yn

w´ x
y z

e´wm´zm
dw

¸

dz

“ 2πi
ż

BD1pxq

yn

pz´ yqn`1 e´
´

x
y z
¯m
´zm

dz

“
p2πiq2

n!
yn

ˆ

d
dz

˙n

e´
´

x
y z
¯m
´zm

ˇ

ˇ

ˇ

ˇ

ˇ

z“y

.

Hence,

RHS “ yne´xm´ym

ˆ

d
dz

˙n

e´
´

x
y z
¯m
´zm

ˇ

ˇ

ˇ

ˇ

ˇ

z“y

.

Since
ˆ

d
dz

˙n

e´pczqm

ˇ

ˇ

ˇ

ˇ

ˇ

z“y

“ cn

ˆ

d
dz

˙n

e´zm

ˇ

ˇ

ˇ

ˇ

ˇ

z“cy

“ cnepcyqm pm,n pcyq ,

we conclude with c “

˜

1`
ˆ

x
y

˙m
¸1{m

that

RHS “ yn

˜

1`
ˆ

x
y

˙m
¸n{m

e´xm´ym
exm`ym

pm,n

´

pxm
` ymq

1{m
¯

“ pxm
` ymq

n{m pm,n

´

pxm
` ymq

1{m
¯

.

By continuity this formula is valid also for x “ y.
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Also solved by the problem proposer.

‚ 5747 Proposed by Raluca Maria Caraion, Călăraşi, Romania and Florică Anastase, Lehliu-
Gară, Romania.

Suppose f : p2, 3q Ñ p0,8q is a function with f 1pxq ă 0 and f 2pxq ă 0 for all x in p2, 3q.
Show that for a, b, c in p1, 2q :

ÿ

cyc

f

˜

pa` 1qpb` 1q

1`
?

ab

¸

ě 2 ¨ 4

d

ź

cyc

f pa` 1q ¨
ÿ

cyc

f pa` 1q.

Solution 1 by Michel Bataille, Rouen, France.

First, we remark that for a, b ą 1, we have

pa` 1qpb` 1q

1`
?

ab
ď

a` b` 2
2

. (1)

Indeed, the inequality 2pa`1qpb`1q ď p1`
?

abqpa`b`2q rewrites as p
?

ab´1qp
?

a´
?

bq2 ě 0,
which obviously holds.

Note in passing that for a, b P p1, 2q, we have
pa` 1qpb` 1q

1`
?

ab
P p2, 3q. This follows from p1q since

pa` 1qpb` 1q

1`
?

ab
ă

2` 2` 2
2

“ 3 and from pa`1qpb`1q´2p1`
?

abq “ p
?

a´
?

bq2`pab´1q ą

0.
Now, f being decreasing on p2, 3q (since f 1pxq ă 0), p1q gives

f

˜

pa` 1qpb` 1q

1`
?

ab

¸

ě f
ˆ

a` b` 2
2

˙

.

The function f being concave (since f 2pxq ă 0), we have

f
ˆ

a` b` 2
2

˙

“ f
ˆ

pa` 1q ` pb` 1q
2

˙

ě
1
2

f pa` 1q `
1
2

f pb` 1q

and we deduce that

ÿ

cyc

f

˜

pa` 1qpb` 1q

1`
?

ab

¸

ě
1
2

¨

˝ f pa` 1q ` f pb` 1q ` f pc` 1q `
ÿ

cyc

f pa` 1q

˛

‚.

Lastly, from AM ´GM, we obtain

f pa` 1q ` f pb` 1q ` f pc` 1q `
ÿ

cyc

f pa` 1q ě 4 4

d

ź

cyc

f pa` 1q ¨
ÿ

cyc

f pa` 1q
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and the required inequality follows.

Solution 2 by Perfetti Paolo, dipartimento di matematica Università di “Tor Vergata", Roma,
Italy.

Let’s show that
pa` 1qpb` 1q

1`
?

ab
ď 3 by defining a ` b “ 2u, ab “ v2 (v ď u by the AGM).

The inequality becomes

1` v`
2u´ 2v

1` v
ď 3 ðñ v`

2u´ 2v
1` v

ď 2, 1 ď v ď u ď 2

The function v`
2u´ 2v
1` v

� f puq is linear increasing in u hence

f puq ď f p2q “ v`
4´ 2v
1` v

ď 2 ðñ v2
´ 3v` 2 ď 0 ðñ 1 ď v ď 2

which holds true because v “
?

ab ď 2. It follows

ÿ

cyc

f

˜

pa` 1qpb` 1q

1`
?

ab

¸

ě 3 f p3q ě 2 4

d

ź

cyc

f p2` 1q ¨
ÿ

cyc

f p2` 1q ě

ě 2 4

d

ź

cyc

f pa` 1q ¨
ÿ

cyc

f pa` 1q

3 f p3q ě 2 4

d

ź

cyc

f p2` 1q ¨
ÿ

cyc

f p2` 1q ðñ 81 ě 48

and the inequality is proven (apparently no need of the concavity of f pxq.)

Solution 3 by Albert Stadler, Herrliberg, Switzerland.

We will prove more precisely that

ÿ

cycl

f

˜

pa`1q pb`1q

1`
?

ab

¸

ě

b

3
?

3‚ 4

d

ź

cycl

f pa`1q‚
ÿ

cycl

f pa`1q

with equality if and only if a=b=c. (Note that
b

3
?

3ą 2).

We first note that 2ă
pa`1q pb`1q

1`
?

ab
ă 3 if a,bP(1,2), for 2ă

pa`1q pb`1q

1`
?

ab
is equivalent to

1` 2
?

abăa`b`ab which holds true, since 2
?

abďa`b and abą1, and
pa`1q pb`1q

1`
?

ab
ă 3 fol-

lows from 1`
a`b

2
´
pa`1q pb`1q

1`
?

ab
“

´?
a´
?

b
¯2 ´?

ab´1
¯

2
´

1`
?

ab
¯ ě0 so that

pa`1q pb`1q

1`
?

ab
ď1`

a`b
2

,
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and
a`b

2
ă 2.

The fact f’(x)ă0 implies that f(x) is a (strictly) monotonically decreasing function. Hence

f

˜

pa`1q pb`1q

1`
?

ab

¸

ě f
ˆ

1`
a`b

2

˙

.

The fact f”(x)ă0 implies that f(x) is concave. Hence

1
2

f p1`aq`
1
2

f p1`bqď f
ˆ

1`
a`b

2

˙

,

by Jensen’s inequality. We conclude that

ÿ

cycl

f

˜

pa`1q pb`1q

1`
?

ab

¸

ě
ÿ

cycl

f
ˆ

1`
a`b

2

˙

ě
ÿ

cycl

ˆ

1
2

f p1`aq`
1
2

f p1`bq
˙

“

“
ÿ

cyc

f p1`aq“
4

g

f

f

f

e

¨

˝

ÿ

cyc

f p1`aq

˛

‚

3
ÿ

cyc

f p1`aqě 4

d

27
ź

cyc

f p1`aq
ÿ

cyc

f p1`aq“

“

b

3
?

3 ¨ 4

d

ź

cycl

f pa`1q¨
ÿ

cycl

f pa`1q,

where in the second last step we have used the AM-GM inequality. Following the chain of inequal-
ities we see that equality holds if and only if a=b=c.

Solution 4 by Moti Levy, Rehovot, Israel.

By AM-GM inequality

ź

cyc

f pa` 1q ď
1

27

¨

˝

ÿ

cyc

f pa` 1q

˛

‚

3

. (10)

Plugging (10) in the right side of the original inequality, we get

2 4

d

ź

cyc

f pa` 1q
ÿ

cyc

f pa` 1q ď
2

4
?

27

ÿ

cyc

f pa` 1q � 0.877 38
ÿ

cyc

f pa` 1q . (11)

Claim: the following inequality holds for x, y in p2, 3q

x` y
2

ě
xy

1`
a

px´ 1q py´ 1q
. (12)

Proof of Claim: Inequality (12) is equivalent to

px` yq
b

px´ 1q py´ 1q ą 2xy´ x´ y. (13)

11



It is easy to see that
xy ą x` y for x, y in p2, 3q , (14)

hence we may square both sides and get the equivalent inequality

px` yq2 px´ 1q py´ 1q ´ p2xy´ x´ yq2 ą 0.

To complete the proof, we factor the left side

px` yq2 px´ 1q py´ 1q ´ p2xy´ x´ yq2 “ pxy´ x´ yq px´ yq2 ą 0.�

Setting x “ a` 1, y “ b` 1, then by claim,

pa` 1q ` pb` 1q
2

ě
pa` 1q pb` 1q

1`
?

ab
for a, b in p1, 2q . (15)

Since the function f is decreasing in p1, 2q then it follows that f

˜

pa` 1q pb` 1q

1`
?

ab

¸

ě f
ˆ

pa` 1q ` pb` 1q
2

˙

,

so that by symmetry,

ÿ

cyc

f

˜

pa` 1q pb` 1q

1`
?

ab

¸

ě
ÿ

cyc

f
ˆ

pa` 1q ` pb` 1q
2

˙

. (16)

Since the function f is concave in p1, 2q then by Jensen’s inequality,

f
ˆ

pa` 1q ` pb` 1q
2

˙

ě
1
2

f pa` 1q `
1
2

f pb` 1q . (17)

It follows by symmetry that,

ÿ

cyc

f
ˆ

pa` 1q ` pb` 1q
2

˙

ě
ÿ

cyc

f pa` 1q . (18)

By (11), (17) and (18) we have

ÿ

cyc

f

˜

pa` 1q pb` 1q

1`
?

ab

¸

ě
ÿ

cyc

f pa` 1q ě
2

4
?

27

ÿ

cyc

f pa` 1q ě 2 4

d

ź

cyc

f pa` 1q
ÿ

cyc

f pa` 1q.

Also solved by the problem proposer.

‚ 5748 Proposed by Narendra Bhandari, Bajura, Nepal.

Let Bk denote the kth Bernoulli number. For positive integers m and n prove that

ż π

´π

«

n
ÿ

k“1

km sin pkxq

ff2

dx “
π

2m` 1

2m
ÿ

k“0

ˆ

2m` 1
k

˙

Bk n2m´n`1.

12



Solution 1 by Ulrich Abel, Technische Hochschule Mittelhessen, Friedberg, Germany.

By Parseval’s theorem for Fourier series over r´π, πs and Bernoulli’s formula for the sum of pow-
ers, it follows that

ż π

´π

«

n
ÿ

k“1

km sin pkxq

ff2

dx “ π
n
ÿ

k“1

k2m
“

π

2m` 1

2m
ÿ

k“0

ˆ

2m` 1
k

˙

Bkn2m`1´k.

This corrects a misprint in the statement of the problem.

Remark: Using the orthogonality of the trigonometric functions one can substitute Parseval’s theo-
rem by a direct proof as follows:

ż π

´π

«

n
ÿ

k“1

km sin pkxq

ff2

dx “

n
ÿ

k“1

n
ÿ

j“1

km jm
ż π

´π

sin pkxq sin p jxq dx

“

n
ÿ

k“1

k2m
ż π

´π

sin2
pkxq dx “ π

n
ÿ

k“1

k2m.

Solution 2 by Moti Levy, Rehovot, Israel.

Since
ż π

´π

sin pmxq sin pnxq dx “

#

π i f m “ n
0 i f m , n

+

, for m, n ě 1, then

ż π

´π

«

n
ÿ

k“1

km sin pkxq

ff2

dx “
ż π

´π

n
ÿ

k“1

k2m sin2
pkxq dx

“

n
ÿ

k“1

k2m
ż π

´π

sin2
pkxq dx “ π

n
ÿ

k“1

k2m.

The Faulhaber’s formula expresses the sum of the p-th powers of the first n positive integers as
polynomial in n.

n
ÿ

k“1

kp
“

1
p` 1

p
ÿ

k“0

ˆ

p` 1
k

˙

Bknp´k`1,

where Bk are the Bernoulli numbers with the convention that B1 “ `
1
2
.

To complete the proof set p “ 2m in the Faulhaber’s formula. �

Solution 3 by Michel Bataille, Rouen, France.

The well-known link between the sums of powers of the first pn´ 1q positive integers and the

13



Bernoulli numbers,
n´1
ÿ

k“1

km
“

1
m` 1

m
ÿ

j“0

ˆ

m` 1
j

˙

B jnm`1´ j

(see for example, K.S. Williams, Bernoulli’s Identity Without Calculus, Math. Magazine, Vol. 70,
No 1, February 1997) makes me think that there are typos in the statement of the problem, so I
prove the following identity instead:

ż π

´π

«

n´1
ÿ

k“1

km sinpkxq

ff2

dx “
π

2m` 1

2m
ÿ

k“0

ˆ

2m` 1
k

˙

Bkn2m´k`1. (1)

For positive integers k, `, with k , `, we have
ż π

´π

sin2
pkxq dx “

ż π

´π

1´ cosp2kxq
2

dx “ π´

„

sinp2kxq
2k

π

´π

“ π

and
ż π

´π

sinpkxq sinp`xq dx “
1
2

ż π

´π

pcosppk ´ `qxq ´ cosppk ` `qxqq dx

“
1
2

„

sinppk ´ `qxq
k ´ `

´
sinppk ` `qxq

k ` `

π

´π

“ 0.

It follows that

ż π

´π

«

n´1
ÿ

k“1

km sinpkxq

ff2

dx “
n´1
ÿ

k“1

ż π

´π

k2m sin2
pkxq dx “ π

n´1
ÿ

k“1

k2m

The identity p1q follows since

n´1
ÿ

k“1

k2m
“

1
2m` 1

2m
ÿ

k“0

ˆ

2m` 1
k

˙

Bkn2m´k`1.

Also solved by Yunyong Zhang, Chinaunicom, Yunnan, China; Albert Stadler, Herrliberg,
Switzerland; and the problem proposer.

‚ 5749 Proposed by Prakash Pant, Mathematics Initiatives in Nepal(MIN), Bardiya, Nepal.

Let x, y, z be positive real numbers with x` y` z “ 3. Prove that:
ź

x,y,z

px1{xee
q ď e

ř

x,y,z ex

For what values of x, y and z does equality hold?

14



Solution 1 by Sudip Rokaya, Gandaki Boarding School, Humla, Nepal.

We will show an equivalent inequality for
ź

x,y,z

px1{xee
q ď e

ř

x,y,z ex
.

Taking log on both sides of the latter, we get

ÿ

x,y,z

p
1
x
plogxq ` eq ď

ÿ

x,y,z

ex

3e ď
ÿ

x,y,z

pex
´

logx
x
q

1
3

ÿ

x, yzpex
´

logx
x
q ě e

which is equivalent to the original given inequality and which is what we will prove.

Consider the function f pxq “ ex
´

logx
x

:

f
2

pxq “ ex
`

3´ 2logx
x3 ě x`

3´ 2logx
x3

“
x4 ´ 2logx` 3

x3

ě
x4 ´ 2x2 ` 3

x3

“
px2 ´ 1q2 ` 2

x3 ě 0 px ą 0q

Thus, f
2

pxq is always positive when x P R`. Using Jensen’s Inequality,

f pxq ` f pyq ` f pzq
3

ě f p
x` y` z

3
q

ř

x,y,z ex ´
logx

x

3
ě e

x`y`z
3 ´

logp x`y`z
3 q

x`y`z
3

“ e1
´

logp1q
1

“ e´ 0 “ e.

Solution 2 by Ulrich Abel, Technische Hochschule Mittelhessen, Friedberg, Germany.

The inequality is equivalent to
1 ď e f pxq` f pyq` f pzq,

15



where f pxq “ ex
´ e´plog xq {x. Since f 2 pxq “ ex

`p3´ 2 log xq x´3
ě ex

`p3´ 2 log 3q x´3
ě

ex
ą 0, for 0 ă x ď 3, the function f is convex on p0, 3s. By Jensen’s inequality, we conclude that

0 “ f p1q “ f
ˆ

x` y` z
3

˙

ď
f pxq ` f pyq ` f pzq

3
which implies that e f pxq` f pyq` f pzq

ě 1.

Remark: Since f 2 pxq ą 0, for x ą 0, the more general inequality

n
ź

i“1

´

x1{xk
k ee

¯

ď exp

˜

n
ÿ

k“1

exk

¸

,

is valid, for positive real numbers x1, . . . , xn with
n
ÿ

k“1

xk “ n.

Solution 3 by Henry Ricardo, Westchester Area Math Circle, Purchase, NY.

Let P “ x1{xy1{yz1{z. Assume wlog that x ď y ď z, so that 1{x ě 1{y ě 1{z and ln x ď ln y ď ln z.
Taking the log of P and applying Chebyshev’s sum inequality to the two oppositely ordered se-
quences, we see that

ln P “
1
x

ln x`
1
y

ln y`
1
z

ln z

ď

ˆ

1
x
`

1
y
`

1
z

˙ˆ

ln x` ln y` ln z
3

˙

“

ˆ

1
x
`

1
y
`

1
z

˙

¨ ln 3
?

xyz

ď

ˆ

1
x
`

1
y
`

1
z

˙

¨ ln
ˆ

x` y` z
3

˙

“ 0,

which implies that P “ x1{xy1{yz1{z
ď 1 and

ź

x,y,z

px1{xee
q ď e 3 e. Noting that

ex
` ey

` ez
ě 3 3

?
exeyez “ 3e

x`y`z
3 “ 3e,

we conclude that
ź

x,y,z

px1{xee
q ď e

ř

x,y,z ex
.

Solution 4 by Michel Bataille, Rouen, France.

The exponential function is strictly convex, hence ex
` ey

` ez
ě 3epx`y`zq{3

“ 3e (with equal-
ity if and only if x “ y “ zp“ 1q), and strictly increasing, hence eex`ey`ez

ě e3e with equality if and
only if ex

` ey
` ez

“ 3e. Therefore, we have

e
ř

x,y,z ex
ě e3e

with equality if and only if x “ y “ z “ 1.
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The left-hand side of the inequality being e3e
px1{xy1{yz1{z

q, there just remains to prove that x1{xy1{yz1{z
ď

1, that is,
ln x

x
`

ln y
y
`

ln z
z
ď 0.

Now, the function f : x ÞÑ f pxq “
ln x

x
satisfies f 2pxq ă 0 for x P p0, e3{2

q (since f 2pxq “

p2 ln x´ 3qx´3), hence is strictly concave in p0, 3q. It follows that

ln x
x
`

ln y
y
`

ln z
z
ď 3 ¨

lnppx` y` zq{3q
px` y` zq{3

“ 0

with equality if and only if x “ y “ z “ 1.

In conclusion, the required inequality holds, with equality if and only if x “ y “ z “ 1.

Solution 5 by Moti Levy, Rehovot, Israel.

Taking logarithm of both sides, the inequality in the problem statement is equivalent to

1
x

ln pxq `
1
y

ln pxq `
1
z

ln pxq ď pex
´ eq ` pey

´ eq ` pez
´ zq (19)

The function f puq :“
1
u

ln puq is concave for 0 ă u ă 3 since

f
2

puq “
1
u3

`

2 ln puq ´ 3
˘

ă 0 f or 0 ă u ă 3.

Then by Jensen’s inequality

1
3

ˆ

1
x

ln pxq `
1
y

ln pxq `
1
z

ln pxq
˙

ď
1

x`y`z
3

ln
ˆ

x` y` z
3

˙

“ ln p1q “ 0. (20)

The function g puq :“ eu
´ u is convex for 0 ă u ă 3 since

g
2

puq “ eu
ą 0 f or 0 ă u ă 3.

Then by Jensen’s inequality

1
3

`

pex
´ eq ` pey

´ eq ` pez
´ zq

˘

ě e
x`y`z

3 ´ e “ e´ e “ 0. (21)

Inequalities (20) and (21) imply (19). �

Also solved by Toyesh Prakash Sharma, Agra College, Agra, India; Albert Stadler, Her-
rliberg, Switzerland; Perfetti Paolo, dipartimento di matematica Università di “Tor Vergata",
Roma, Italy; and the problem proposer.
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‚ 5750 Proposed by Albert Natian, Problem Section Editor.

Assuming all the radicands are non-negative, solve the system of equations for real x and y:
$

’

&

’

%

3
a

xy` 3x´ y` 3 ` |x|
a

5xy´ x` y` 4 “
|x|
a

3xy´ 7x` 3y´ 2

a

3x` 9y` 15 ` |yx|
a

5y´ 2x` 34 “
|yx|
a

2y´ 3x` 29

,

/

.

/

-

.

Solution 1 by Albert Stadler, Herrliberg, Switzerland.

Since all radicands are assumed to be non-negative we deduce from the first equation that xy `
3x´ y` 3 ě 0 and 5xy´ x` y` 4 ď 3xy´ 7x` 3y´ 2, and from the second equation that
3x` 9y` 15 ě 0 and 5y´ 2x` 34 ď 2y´ 3x` 29.
So

#

xy` 3x´ y` 3 “ 0
x` 3y` 5 “ 0

+

.

We solve this system of equations and find x “ ´3y´ 5 and p´3y´ 5q y` 3 p´3y´ 5q ´ y` 3 “
´3 py` 1q py` 4q “ 0.

So px, yq P
 

p´2,´1q, p7,´4q
(

. For px, yq “ p7,´4q, not all radicands are non-negative. px, yq “
p´2,´1q is indeed a solution that satisfies the given system of equations, and it is the only one
where all the radicands are non-negative.

Solution 2 by Michel Bataille, Rouen, France.

We show that the pair px, yq “ p´2,´1q is the unique solution to the system.
It is readily checked that p´2,´1q is a solution. Conversely, let px, yq be a solution.
We remark that for any x, y, we have

p5xy´ x` y` 4q ´ p3xy´ 7x` 3y´ 2q “ 2pxy` 3x´ y` 3q (1)

and
p5y´ 2x` 34q ´ p2y´ 3x` 29q “

1
3
p3x` 9y` 15q. (2)

Using the fact that the function t ÞÑ t1{r is increasing on p0,8qwhen r ą 0, p1q, and xy`3x´y`3 ě
0, we obtain

|x|
a

5xy´ x` y` 4 ě |x|
a

3xy´ 7x` 3y´ 2.

The first equation of the system then yields 3
a

xy` 3x´ y` 3 ď 0 so that xy` 3x´ y` 3 “ 0.
In a similar way, the second equation of the system gives x ` 3y ` 5 “ 0. Therefore we have
x “ ´3y ´ 5 and yp´3y ´ 5q ` 3p´3y ´ 5q ´ y ` 3 “ 0, that is, y2

` 5y ` 4 “ 0. Thus, y “ ´1

18



or ´4 and px, yq “ p´2,´1q or p7,´4q. However, the latter leads to 5xy´ x` y` 4 “ ´147 ă 0,
hence has to be rejected and we must have px, yq “ p´2,´1q.

Also solved by problem proposer.

Editor’s Statement: It goes without saying that the problem proposers, as well as the solution
proposers, are the élan vital of the Problems/Solutions Section of SSMJ. As the editor of this Sec-
tion of the Journal, I consider myself fortunate to be in a position to receive, compile and organize
a wealth of proposed ingenious problems and solutions intended for online publication. My un-
wavering gratitude goes to all the amazingly creative contributors. We come together from across
continents because we find intellectual value, joy and satisfaction in mathematical problems, both
in their creation as well as their solution. So that our collective efforts serve us well, I kindly ask
all contributors to adhere to the following guidelines. As you peruse below, you may construe that
the guidelines amount to a lot of work. But, as the samples show, there’s not much to do. Your
cooperation is much appreciated!

Keep in mind that the examples given below are your best guide!

Formats, Styles and Recommendations

When submitting proposed problem(s) or solution(s), please send both LaTeX document and pdf
document of your proposed problem(s) or solution(s). There are ways (discoverable from the in-
ternet) to convert from Word to proper LaTeX code. Porposals without a proper LaTeX document
will not be published regrettably.

Regarding Proposed Solutions:

Below is the FILENAME format for all the documents of your proposed solution(s).

#ProblemNumber_FirstName_LastName_Solution_SSMJ

‚ FirstName stands for YOUR first name.

‚ LastName stands for YOUR last name.

Examples:
#1234_Max_Planck_Solution_SSMJ

#9876_Charles_Darwin_Solution_SSMJ

Please note that every problem number is preceded by the sign # .
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All you have to do is copy the FILENAME format (or an example below it), paste it and then
modify portions of it to your specs.

Please adopt the following structure, in the order shown, for the presentation of your solution:

1. On top of the first page of your solution, begin with the phrase:

“Proposed Solution to #**** SSMJ”

where the string of four astrisks represents the problem number.

2. On the second line, write

“Solution proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country, all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s).

3. On a new line, state the problem proposer’s name, affiliation, city and country, just as it ap-
pears published in the Problems/Solutions section.

4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.

7. Below the latter, show the entire solution of the problem.

Here is a sample for the above-stated format for proposed solutions:

Proposed solution to #1234 SSMJ

Solution proposed by Emmy Noether, University of Göttingen, Lower Saxony, Ger-
many.

Problem proposed by Isaac Newton, Trinity College, Cambridge, England.

Statement of the problem:

Compute
n
ÿ

k“0

ˆ

n
k

˙

xkyn´k.
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Solution of the problem: . . . . . .

Regarding Proposed Problems:

For all your proposed problems, please adopt for all documents the following FILENAME for-
mat:

FirstName_LastName_ProposedProblem_SSMJ_YourGivenNumber_ProblemTitle

If you do not have a ProblemTitle, then leave that component as it already is (i.e., ProblemTitle).

The component YourGivenNumber is any UNIQUE 3-digit (or longer) number you like to give
to your problem.

Examples:

Max_Planck_ProposedProblem_SSMJ_314_HarmonicPatterns

Charles_Darwin_ProposedProblem_SSMJ_358_ProblemTitle

Please adopt the following structure, in the order shown, for the presentation of your pro-
posal:

1. On the top of first page of your proposal, begin with the phrase:

“Problem proposed to SSMJ”

2. On the second line, write

“Problem proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s) if any.

3. On a new line state the title of the problem, if any.

4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.
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7. Below the latter, show the entire solution of your problem.

Here is a sample for the above-stated format for proposed problems:

Problem proposed to SSMJ

Problem proposed by Isaac Newton, Trinity College, Cambridge, England.

Principia Mathematica (ÐÝ You may choose to not include a title.)

Statement of the problem:

Compute
n
ÿ

k“0

ˆ

n
k

˙

xkyn´k.

Solution of the problem: . . . . . .

♣ ♣ ♣ Thank You! ♣ ♣ ♣
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