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This section of the Journal offers readers an opportunity to exchange interesting mathematical prob-
lems and solutions. Please email them to Prof. Albert Natian at Department of Mathematics, Los
Angeles Valley College. Please present all proposed solutions and proposed problems according to
formatting requirements delineated near the end of this document. Also, please make sure every
proposed problem or proposed solution is provided in both LaTeX and pdf documents. Thank you!

To propose problems, email them to: problems4ssma@gmail.com

To propose solutions, email them to: solutions4ssma@gmail.com

Solutions to previously published problems can be seen at ăwww.ssma.org/publicationsą.

Solutions to the problems published in this issue should be submitted before December 1,
2024.

‚ 5781 Proposed by Daniel Sitaru, National Economic College "Theodor Costescu"
Drobeta Turnu - Severin, Romania..

Let m, n, p, q, r, s P Nzt0u and define

Hpmq
n “

1
1m `

1
2m ` . . .`

1
nm .

Prove that
`

Hp2pq
n ` Hp2qq

n
˘`

Hp2rq
n ` Hp2sq

n
˘

ě
`

Hpp`rq
n ` Hpq`sq

n
˘2
.

‚ 5782 Proposed by Toyesh Prakash Sharma and Etisha Sharma, Agra College, Agra, India..

If a, b, c ě 1, then prove that

a2

b` c
`

b2

c` a
`

c2

a` b
ě

a` b` c
2

˜

a2 ` b2 ` c2

ab` bc` ca

¸

.

‚ 5783 Proposed by Goran Conar, Varaždin, Croatia.

Let x1, . . . , xn ą 0 be real numbers and set s “
n
ÿ

i“1

xi. Prove

n
ź

i“1

xxi
i ě

ˆ

s
n` s

˙s n
ź

i“1

p1` xiq
xi .
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When does equality occur?

‚ 5784 Proposed by Ivan Hadinata, Senior High School 1 Jember, Jember, Indonesia.

Find all postive integers n for which there exist n pairwise-distinct positive integers x1, x2, ....., xn

satisfying the equation:

ln x1 ` ln x2 ` ¨ ¨ ¨ ` ln xn “ lnpx1 ` x2 ` ¨ ¨ ¨ ` xnq.

where ln denotes natural logarithm.

‚ 5785 Proposed by Vasile Cirtoaje, Petroleum-Gas University of Ploiesti, Romania.

Prove that 3 is the largest positive value of the constant k such that

1
a
`

1
b
`

1
c
`

1
d
´ 4 ě kpa` b` c` d ´ 4q

for any positive real numbers a, b, c, d with a ě b ě c ě 1 ě d and ab` bc` cd ` da “ 4.

‚ 5786 Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania.

Find all continuous functions f : RÑ R such that for all x P R:

f p´xq “ 1´ 2
ż x

0
e´t f px´ tqdt.

Solutions
To Formerly Published Problems

‚ 5757 Proposed by Daniel Sitaru, National Economic College “Theodor Costescu" Drobeta Turnu
- Severin, Romania.

Suppose f : r0, 1s Ñ R is continuous and
ż 1

0
f pxqdx “ 1{2. Show that

2`
ż 1

0
f 2
pxqdx ě 6

ż 1

0
x f pxqdx.

Solution 1 by Henry Ricardo, Westchester Area Math Circle, Purchase, NY.

We prove the more general inequality

1
4

ż 1

0
f 2
pxq dx` 2

˜

ż 1

0
f pxq dx

¸2

ě 3
ż 1

0
f pxq dx ¨

ż 1

0
x f pxq dx. (1)
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Then substituting the given integral value and clearing fractions gives us the desired inequality.

Now set
ż 1

0
f pxq dx “ t and consider the quadratic polynomial

t2
´ 3

˜

ż 1

0
px´ 1{3q f pxq dx

¸

t `
1
4

ż 1

0
f 2
pxq dx. (2)

The discriminant of this polynomial is

D “ 9

˜

ż 1

0
px´ 1{3q f pxq dx

¸2

´

ż 1

0
f 2
pxq dx.

The CBS inequality yields

D ď 9 ¨
ż 1

0
px´ 1{3q2 dx ¨

ż 1

0
f 2
pxq dx´

ż 1

0
f 2
pxq dx

“

ż 1

0
f 2
pxq dx´

ż 1

0
f 2
pxq dx “ 0.

Since D ď 0 and the coefficient of t2 in p2q is positive, we see that the quadratic is nonnegative for
all values of t. Therefore

˜

ż 1

0
f pxq dx

¸2

`
1
4

ż 1

0
f 2
pxq dx ě 3

˜

ż 1

0
px´ 1{3q f pxq dx

¸

¨

ż 1

0
f pxq dx

“ 3

˜

ż 1

0
x f pxq dx´

1
3

ż 1

0
f pxq dx

¸

¨

ż 1

0
f pxq dx

“ 3
ż 1

0
x f pxq dx ¨

ż 1

0
f pxq dx´

˜

ż 1

0
f pxq dx

¸2

,

which gives us p1q.

Solution 2 by Perfetti Paolo, dipartimento di matematica Universit„a di “Tor Vergata", Roma,
Italy.

ż 1

0
p f ´ 3x` aq2dx “

ż 1

0
p f 2

´ 6x f ` 9x2
` a2

` 2a f ´ 6xaqdx ě 0.

Thus
ż 1

0
p f 2

´ 6x f qdx ě ´3´ a2
´ a` 3a ě ´2 ðñ pa´ 1q2 ď 0 ðñ a “ 1

and this concludes the proof.
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Solution 3 by Albert Stadler, Herrliberg, Switzerland.

Suppose f: [0,1]ÑR is continuous and
ż 1

0
f pxq dx “

1
2

. Show that

2`
ż 1

0
f 2 pxq dx ě 6

ż 1

0
x f pxq dx.

Solution of the problem
We have

0 ď
ż 1

0

`

f pxq ´ 3x` 1
˘2

dx “
ż 1

0

´

f 2 pxq ` 9x2
` 1´ 6x f pxq ` 2 f pxq ´ 6x

¯

dx “

“

ż 1

0
f 2 pxq dx` 3` 1´ 6

ż 1

0
x f pxq dx` 1´ 3

which implies

2`
ż 1

0
f 2 pxq dx ě 6

ż 1

0
x f pxq dx.

Solution 4 by Moti Levy, Rehovot, Israel.

Let F pxq :“
ż x

0
f ptq dt. After integration by parts,

ż 1

0
x f pxq dx “ xF pxq

‰1
0 ´

ż 1

0
F pxq dx “

1
2
´

ż 1

0
F pxq dx. (3)

Substituting (3) in the original inequality we get

2`
ż 1

0

´

F
1

pxq
¯2

dx ě 3´ 6
ż 1

0
F pxq dx

ż 1

0
x f pxq dx,

or
ż 1

0

ˆ

6F pxq `
´

F
1

pxq
¯2
˙

dx ě 1.

Let

J pFq :“
ż 1

0

ˆ

6F pxq `
´

F
1

pxq
¯2
˙

dx ě 1,

then the original inequality is equivalent to the statement that the functional J pFq is greater than or
equal to 1 for every differentiable function F pxq ,which satisfies the boundary conditions F p0q “ 0

and F p1q “
1
2
.

Every differentiable function F pxq , which satisfies the boundary conditions F p0q “ 0 and

F p1q “
1
2

can be expressed as F pxq “
3
2

x2
´ x ` η pxq , where η pxq is differentiable function in

the interval p0, 1q and η p0q “ η p1q “ 0.
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Then

J
ˆ

3
2

x2
´ x` η pxq

˙

“

ż 1

0

˜

6
ˆ

3
2

x2
´ x` η pxq

˙

`

´

3x´ 1` η
1

pxq
¯2
¸

dx

“

ż 1

0

˜

6
ˆ

3
2

x2
´ x

˙

` p3x´ 1q2
¸

dx`
ż 1

0
6η pxq ` 2 p3x´ 1q η

1

pxq `
´

η
1

pxq
¯2

dx

“ 1`
ż 1

0
6η pxq ` 2 p3x´ 1q η

1

pxq `
´

η
1

pxq
¯2

dx

Applying integration by parts, we obtain

J
ˆ

3
2

x2
´ x` η pxq

˙

“ 1`
ż 1

0

´

η
1

pxq
¯2

dx.

It follows that J
`

F pxq
˘

ě 1 for every differentiable function F pxq which satisfies F p0q “ 0 and

F p1q “
1
2
. The functional J pFq attains its minimum when η

1

pxq “ 0 which implies (together with

the boundary conditions η p0q “ η p1q “ 0 that η pxq “ 0 in p0, 1q .

Solution 5 by Michel Bataille, Rouen, France.

Let I “
ż 1

0
p3x´ 1q f pxq dx. Then, we have

6
ż 1

0
x f pxq dx “ 2I ` 2

ż 1

0
f pxq dx “ 2I ` 1.

On the other hand, since
ż 1

0
p3x´ 1q2 dx “

ż 1

0
p9x2

´ 6x` 1q dx “ 1, the Cauchy-Schwarz in-

equality gives

ż 1

0
f 2
pxq dx “

˜

ż 1

0
p3x´ 1q2 dx

¸˜

ż 1

0
f 2
pxq dx

¸

ě

˜

ż 1

0
p3x´ 1q f pxq dx

¸2

“ I2.

As a result, we obtain

2`
ż 1

0
f 2
pxq dx´ 6

ż 1

0
x f pxq dx ě 2` I2

´ 2I ´ 1 “ pI ´ 1q2 ě 0

and the desired inequality follows.

Also solved by Michael Brozinsky, Central Islip, NY; Yunyong Zhang, Chinaunicom, Yun-
nan, China; and the problem proposer.
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‚ 5758 Proposed by Raluca Maria Caraion, Călăraşi, Romania and Florică Anastase, Lehliu-
Gară, Romania.

Suppose P,Q P Intp4ABCq such that βÝÑAB ` γ
ÝÑBP ` ÝÑPC “ 0 and ÝÑAQ ` α

ÝÑQB ` ÝÑBC “ 0 with
α, β, γ P R;α, β , 1. Prove that A, P,Q are collinear if and only if α` γ “ β` 1.

Solution 1 by proposed by Hong Biao Zeng, Fort Hays State University, KS.

By condition ÝÑAQ` α
ÝÑQB`ÝÑBC “ 0, we have

ÝÑAQ “ ´ÝÑBC ´ α
ÝÑQB “ ´ÝÑBP´ÝÑPC ´ αp

ÝÑAB´ÝÑAQq

Hence,
p1´ αq

ÝÑAQ “ ´ÝÑBP´ÝÑPC ´ α
ÝÑAB

“ pγ ´ 1qÝÑAP´ pγ ´ 1qpÝÑAB`ÝÑBPq ´ ÝÑBP´ÝÑPC ´ α
ÝÑAB

“ pγ ´ 1qÝÑAP` p1´ γ ´ αq
ÝÑAB´ γ

ÝÑBP´ÝÑPC

“ pγ ´ 1qÝÑAP` p1´ γ ´ α` βq
ÝÑAB

The last step above used the condition βÝÑAB ` γ
ÝÑBP ` ÝÑPC “ 0. Now it is clear that A, P, Q are

collinear if and only if the coefficient of ÝÑAB is zero, i.e. 1´ γ´α` β “ 0, which is α` γ “ β` 1.

Solution 2 by proposed by Albert Stadler, Herrliberg, Switzerland.

We identify the points A, B, C, P, Q of the Euclidean plane with complex numbers of the complex
number plane and denote them by a, b, c, p, q, respectively. We assume without loss of generality
that a=0. Then the given conditions read as βb`γ pp´ bq`c´p “ 0 and q`α pb´ qq`c´b “ 0.
We solve for p and q and find

p “
pβ´ γq b` c

1´ γ
, q “

p1´ αq b´ c
1´ α

.

Clearly, p,0, q,0, since P, Q P Int(∆ABC) and therefore P,A and Q,A.
If z is a complex number we denote by z the complex conjugate of z.
Note that bc is real if and only if A, B, C are collinear which means that the triangle ABC is
degenerate with no interior points. But the triangle has interior points, since P, Q P Int(∆ABC). So
bc is a complex, non-real number.

A, P, Q are collinear if and only if
p
q
“

1´ α

1´ γ
¨
pβ´ γq b` c
p1´ αq b´ c

is real which is the case if and only if

`

pβ´ γq b` c
˘

´

p1´ αq b´ c
¯

is real and this number is real if and only if

p1´ αq bc´ pβ´ γq bc “ p1´ αq
´

bc` bc
¯

´ pβ´ γ ` 1´ αq bc
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is real. Note that
´

bc` bc
¯

is real and bc is non-real. So above term is real if and only if
β´ γ ` 1´ α “ 0. So A, P, Q are collinear if and only if α+γ=β+1.

Solution 3 by proposed by Michel Bataille, Rouen, France.

From β
ÝÑAP ` β

ÝÑPB ` γ
ÝÑBP ` ÝÑPC “

ÝÑ0 , we deduce βÝÑPA ` pγ ´ βq
ÝÑPB ´ ÝÑPC “

ÝÑ0 , hence P “

pβ : γ ´ β : ´1q in barycentric coordinates relatively to pA, B,Cq. Similarly, we easily obtain that
Q “ p1 : 1´ α : ´1q. It follows that A, P,Q are collinear if and only if∣∣∣∣∣∣∣∣∣

1 β 1
0 γ ´ β 1´ α
0 ´1 ´1

∣∣∣∣∣∣∣∣∣ “ 0,

that is, ´pγ ´ βq ` p1´ αq “ 0 or α` γ “ β` 1, as required.

Notes. 1/ The condition for the existence of the points P,Q is α, γ , 1; the value of β does not
matter.
2/ The hypothesis P,Q P Intp∆ABCq should be deleted: since ÝÑBQ “

1
α´ 1

ÝÑAC, the point Q is on

the parallel to AC through B and cannot be interior to ∆ABC.

Also solved by Bruno Salgueiro Fanego, Viveiro, Lugo, Spain; and the problem proposer.

‚ 5759 Proposed by Ivan Hadinata, Senior High School 1 Jember, Jember, Indonesia.

Find all pairs pa, bq of non-negative integers satisfying the equation ab
´ ba

“ a` b.

Solution 1 by proposed by Michel Bataille, Rouen, France.

It is readily checked that p0, 0q, p1, 0q and p2, 5q are solutions for pa, bq (agreeing that x0
“ 1

for all real x). We show that there are no other solutions. Clearly, no pair p0, bq with b ě 1 is a
solution and a pair pa, 0q with a ě 1 is a solution only if a “ 1. There remains to show that if pa, bq
is a solution with a, b ě 1, then pa, bq “ p2, 5q.
It is readily seen that ab

´ ba , a ` b for all pairs p1, nq, pn, 1q, pn, nq, p2, 3q, p2, 4q where n P N
and, by an easy induction, that 2n

ą n2
` n ` 2 for all integer n ě 6. Also, if 3 ď b ă a, then

ln a
a
ă

ln b
b

; hence ab
ă ba and therefore ab

´ ba , a` b . The proof will be complete if we show
that

ab
ą ba

` a` b (1)

holds for any integers a, b with a ě 3, b ě a` 1.
We prove p1q by induction on b (for an arbitrary fixed a). We will use the following well-known
result:

ˆ

1`
1
3

˙3

“
64
27
ď

ˆ

1`
1
t

˙t

ă e for all t P r3,8q.

7



For b “ a ` 1, p1q writes as aa`1
ą pa ` 1qa ` 2a ` 1 or a ą

ˆ

1`
1
a

˙a

` upaq where upaq

denotes
2a` 1

aa . Since for n ě 3,
upn` 1q

upnq
“

2n` 3
pnp2n` 3q ` 1qp1` 1{nqn

ď
27
64
ă 1, the sequence

pupnqqně3 is decreasing and so upaq ď up3q “
7

27
. Thus

ˆ

1`
1
a

˙a

` upaq ă e`
7

27
ă 3 ď a

and p1q holds for b “ a` 1.
As for the inductive step, if p1q holds for some b ě a` 1, then

ab`1
“ a.ab

ą aba
` a2

` ab ą pb` 1qa ` a` b` 1

the latter inequality since

aba
´ pb` 1qa “ ba

˜

a´
ˆ

1`
1
b

˙a
¸

ą ba

˜

a´
ˆ

1`
1
b

˙b
¸

ą ba
pa´ eq ą 0

and
a2
` ab´ a´ b´ 1 “ a2

` bpa´ 1q ´ a´ 1 ě a2
` pa2

´ 1q ´ a´ 1 ą 0.

Also solved by the problem proposer.

‚ 5760 Proposed by Michel Bataille, Rouen, France.

Let a, b be real numbers such that 0 ă a ă b. Prove that

pa` bqa`b
pb´ aqb´a

ą pa2
` b2

q
b.

Solution 1 by proposed by Moti Levy, Rehovot, Israel.

Let
x :“ a` b, y :“ b´ a,

then the inequality in terms of x and y is

x ln
`

x2
˘

` y ln
`

y2
˘

2
ą

x` y
2

ln

˜

x2 ` y2

2

¸

, x ą 0, y ą 0.

The function
f ptq :“ t ln

´

t2
¯
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is convex for t ą 0 since f
2

ptq “
2
t
ą 0 for t ą 0. Hence by Jensen’s inequality the original

inequality is true.

Solution 2 by proposed by Perfetti Paolo, dipartimento di matematica Universit„a di “Tor
Vergata," Roma, Italy.

pa` bqa`b
pb´ aqb´a

ą pa2
` b2

q
b
“ ba`b

ˆ

a
b
` 1

˙bp1´ b
a q

bb´a

ˆ

1´
a
b

˙bp1´ a
b q

ą b2b

˜

1`
a2

b2

¸

.

If a{b “ x P p0, 1q the inequality becomes

p1´ xq1´x
p1` xq1`x

ą 1` x2
ðñ

ˆ

1` x
1´ x

˙x

ą
1` x2

1´ x2

which in turn it is equivalent to

explnp1`xq´lnp1´xqq
ą elnp1`x2q´lnp1´x2q

ðñ xplnp1` xq ´ lnp1´ xq ą lnp1` x2
q ´ lnp1´ x2

q

lnp1` xq “
8
ÿ

k“1

p´1qk´1xk

k
, lnp1´ xq “ ´

8
ÿ

k“1

xk

k
, 0 ď x ă 1

lnp1` xq ´ lnp1´ xq “
8
ÿ

k“0

2x2k`1

2k ` 1

hence xplnp1` xq ´ lnp1´ xq ą lnp1` x2
q ´ lnp1´ x2

q is equivalent to
8
ÿ

k“0

2x2k`1

2k ` 1
ą

8
ÿ

k“0

2x4k`2

2k ` 1

which evidently holds true by 0 ď x ă 1.

Also solved by Albert Stadler, Herrliberg, Switzerland; and the problem proposer.

‚ 5761 Proposed by Narendra Bhandari and Yogesh Joshi, Nepal.

8
ÿ

n“0

ˆ

2n
n

˙

ˆ

Hr n
2s
´ Hr n´1

2 s

˙

4np6n` 3q
`

ż π
4

0

4y sec ydy
a

9 cos 2y
“ ζp2q

where Hrns “
ż 1

0

1´ xn

1´ x
dx and ζpnq “

8
ÿ

k“1

1
kn is Riemann zeta function for n ą 1.

Solution 1 by proposed by Albert Stadler, Herrliberg, Switzerland.

We have

8
ÿ

n“0

˜

2n
n

¸

ˆ

Hr n
2s
´ Hr n´1

2 s

˙

4n p6n` 3q
“

1
3

8
ÿ

n“0

˜

2n
n

¸

1
4n p2n` 1q

ż 1

0

x
n´1

2 ´ x
n
2

1´ x
dx “

9



“
1
3

8
ÿ

n“0

˜

2n
n

¸

1
4n p2n` 1q

ż 1

0

x
n´1

2

1`
?

x
dx

x“y4
hkkikkj

“
4
3

8
ÿ

n“0

˜

2n
n

¸

1
4n p2n` 1q

ż 1

0

y2n`1

1` y2 dy “

“
4
3

ż 1

0

arcsiny
1` y2 dy

y“tanz
hkkikkj

“
4
3

ż π
4

0
arcsin ptanz q dz,

where we have used Taylor’s expansion of arcsin(.), namely

arcsinx “
8
ÿ

n“0

˜

2n
n

¸

x2n`1

4n p2n` 1q
.

The interchange of summation and integration is permitted, since all involved terms are positive.
We note that
ż

secy
a

cos p2yq
dy “

ż

1

cosy
b

cos2y ´ sin2y
dy “

ż

1

cos2y
a

1´ tan2y
dy “ arcsin ptany q `C.

Integration by parts then gives
ż π

4

0

4ysecy dy
a

9cos p2yq
“

4y
3

arcsin ptany q
ˇ

ˇ

ˇ

ˇ

π
4

0
´

4
3

ż π
4

0
arcsin ptany q dy “

“
π2

6
´

4
3

ż π
4

0
arcsin ptany q dy “ p2q ´

4
3

ż π
4

0
arcsin ptany q dy.

Hence
8
ÿ

n“0

˜

2n
n

¸

ˆ

Hr n
2s
´ Hr n´1

2 s

˙

4n p6n` 3q
`

ż π
4

0

4ysecy dy
a

9cos p2yq
“ p2q .

Solution 2 by proposed by Moti Levy, Rehovot, Israel.

The equality in the problem statement can be rewritten as
8
ÿ

n“0

`2n
n

˘

4n p2n` 1q

´

H n
2
´ H n´1

2

¯

“ 3ζ p2q ´ 4
ż π

4

0

y sec pyq
a

cos p2yq
dy (4)

By change of integration variable and the fact ζ p2q “
π2

6
, (4) is equivalent to

8
ÿ

n“0

`2n
n

˘

4n p2n` 1q

´

H n
2
´ H n´1

2

¯

“
π2

2
´ 4

ż 1

0

arctan ptq
?

1´ t2
dt. (5)

By definition of Hx :“
ż 1

0

1´ tx

1´ t
dx,

H n
2
´ H n´1

2
“

ż 1

0

1´ t
n
2

1´ t
´

1´ t
n
2´

1
2

1´ t
dt

“

ż 1

0
t

n´1
2

1´
?

t
1´ t

dt (6)
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Plugging (6) into the left hand side of (5) and then exchanging the order of summation and integra-
tion, we get

8
ÿ

n“0

`2n
n

˘

4n p2n` 1q

´

H n
2
´ H n´1

2

¯

“

8
ÿ

n“0

`2n
n

˘

4n p2n` 1q

ż 1

0
t

n´1
2

1´
?

t
1´ t

dt

“

ż 1

0

1´
?

t
?

t p1´ tq

8
ÿ

n“0

`2n
n

˘

4n p2n` 1q

´?
t
¯n

dt. (7)

The power series expansion of arcsin pzq is

arcsin pzq “
8
ÿ

n“0

`2n
n

˘

4n p2n` 1q
z2n`1 (8)

Applying (8) to (7) we get

8
ÿ

n“0

`2n
n

˘

4n p2n` 1q

´

H n
2
´ H n´1

2

¯

“

ż 1

0

1´
?

t
?

t p1´ tq

arcsin
`

4
?

t
˘

4
?

t
dt.

Changing the integration variable 4
?

t “ x,
ż 1

0

1´
?

t
?

t p1´ tq

arcsin
`

4
?

t
˘

4
?

t
dt “ 4

ż 1

0

arcsin pxq
x2 ` 1

dx

and then by integration by parts,

4
ż 1

0

arcsin pxq
x2 ` 1

dx “
1
2
π2
´ 4

ż 1

0

arctan pxq
?

1´ x2
dx.

Thus equation (5) is proved.

Solution 3 by proposed by Yunyong Zhang, Chinaunicom, Yunnan, China.

∵ Hr n
2s
´ Hr n´1

2 s
“ 2

ż 1

0

xn

1` x
dx

∴
8
ÿ

n“0

ˆ

2n
n

˙

ˆ

Hr n
2s
´ Hr n´1

2 s

˙

4np6n` 3q
“

2
3

ż 1

0

8
ÿ

n“0

ˆ

2n
n

˙

xn

p1` xq4np2n` 1q
dx

∵
8
ÿ

n“0

ˆ

2n
n

˙

xn

4np2n` 1q
“

8
ÿ

n“0

ˆ

2n
n

˙ ?
x2n

4np2n` 1q

“
1
?

x

8
ÿ

n“0

ˆ

2n
n

˙ ?
x2n`1

4np2n` 1q
“

1
?

x
arcsinp

?
xq

11



∴
8
ÿ

n“0

ˆ

2n
n

˙

ˆ

Hr n
2s
´ Hr n´1

2 s

˙

4np6n` 3q
“

2
3

ż 1

0

arcsinp
?

xq
p1` xq

?
x

dx

“
2
3

ż 1

0

arcsin y
p1` y2qy

2ydy plet, y “
?

xq

“
4
3

ż 1

0

arcsin y
1` y2 dy

Now it’s equal to prove

ż π
4

0

y

cos y
a

cosp2yq
dy`

ż 1

0

arcsin y
1` y2 dy “

3
4
ζp2q

ô

ż 1

0

arctan x
?

1´ x2
dx`

ż 1

0

arcsin x
1` x2 dx “

3
4
ζp2q

∵

ż

˜

arctan x
?

1´ x2
`

arcsin x
1` x2

¸

dx “ arcsin x arctan x`C

∴ LHS “ arcsin x arctan x
ˇ

ˇ

ˇ

ˇ

1

0
“ arcsinp1q arctanp1q “

π

4
ˆ
π

2

“
3
4
ˆ
π2

6
“

3
4
ζp2q “ RHS .

Also solved by Narendra Bhandari and Yogesh Joshi, Nepal; and the problem proposer.

‚ 5762 Proposed by Paolo Perfetti, dipartimento di matematica Universit„a di “Tor Vergata", Rome,
Italy.

Let f : r´1, 1s Ñ R be a three-times continuously differentiable such that f p´1q “ f 1p´1q “
f 2p1q “ 0. Prove that

˜

ż 1

´1
f pxqdx

¸2

ď
34

315

ż 1

´1

`

f3pxq
˘2

dx.

Solution 1 by proposed by Brian Bradie, Department of Mathematics, Christopher Newport
University, Newport News, VA.

The indicated inequality is incorrect. As a counterexample, consider the function f pxq “ x3
´

3x2
´ 9x´ 5. Then f p´1q “ f 1p´1q “ f 2p1q “ 0, and

ż 1

´1
f pxq dx “ ´12 and

ż 1

´1
p f3pxqq2 dx “ 72.

Thus,
˜

ż 1

´1
f pxq dx

¸2

“ 144 ą
272
35

“
34
315

ż 1

´1
p f3pxqq2 dx.

12



To establish the correct inequality, we proceed as follows. Integrate by parts with u “ f pxq and
dv “ dx. Because f p´1q “ 0, we choose as v the antiderivative which evaluates to 0 at x “ 1; that
is, choose v “ x´ 1. Then

ż 1

´1
f pxq dx “ px´ 1q f pxq

ˇ

ˇ

ˇ

ˇ

ˇ

1

´1

´

ż 1

´1
px´ 1q f 1pxq dx

“ ´

ż 1

´1
px´ 1q f 1pxq dx.

Next, integrate by parts with u “ f 1pxq, dv “ px ´ 1q dx, and again choose as v the antiderivative

which evaluates to 0 at x “ 1; that is, choose v “
1
2
px´ 1q2. This yields

ż 1

´1
f pxq dx “ ´

1
2
px´ 1q2 f 1pxq

ˇ

ˇ

ˇ

ˇ

ˇ

1

´1

`

ż 1

´1

1
2
px´ 1q2 f 2pxq dx

“

ż 1

´1

1
2
px´ 1q2 f 2pxq dx.

One more integration by parts with u “ f 2pxq, dv “
1
2
px ´ 1q2, and v “

1
6
px ´ 1q3 `

4
3

– the
antiderivative which evaluates to 0 at x “ 1 – gives

ż 1

´1
f pxq dx “

ˆ

1
6
px´ 1q3 `

4
3

˙

f 2pxq

ˇ

ˇ

ˇ

ˇ

ˇ

1

´1

´

ż 1

´1

ˆ

1
6
px´ 1q3 `

4
3

˙

f3pxq dx

“ ´

ż 1

´1

ˆ

1
6
px´ 1q3 `

4
3

˙

f3pxq dx.

Now, by the Cauchy-Schwarz inequality,

˜

ż 1

´1
f pxq dx

¸2

“

˜

ż 1

´1

ˆ

1
6
px´ 1q3 `

4
3

˙

f3pxq dx

¸2

ď

ż 1

´1

ˆ

1
6
px´ 1q3 `

4
3

˙2

dx ¨
ż 1

´1
p f3pxqq2 dx

“
16
7

ż 1

´1
p f3pxqq2 dx.

Equality occurs if and only if f3pxq is a scalar multiple of
1
6
px ´ 1q3 `

4
3

; taking into account the

conditions f p´1q “ f 1p´1q “ f 2p1q “ 0, it follows that equality holds if and only if f pxq is a
scalar multiple of px` 1q2px4

´ 8x3
` 30x2

` 88x´ 671q.
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Solution 2 by proposed by Michel Bataille, Rouen, France.

The proposed inequality cannot hold for all the functions satisfying the given hypotheses: con-
sider the polynomial function p defined by ppxq “ x3

´ 3x2
´ 9x ´ 5. It is readily checked that

pp´1q “ p1p´1q “ p2p1q “ 0. We easily obtain that p3pxq “ 6 so that
ż 1

´1
pp3pxqq2 dx “ 72.

Since
ż 1

´1
ppxq dx “

ż 1

´1
p´3x2

´ 5q dx “ 2
ż 1

0
p´3x2

´ 5q dx “ ´12

we have
˜

ż 1

´1
ppxq dx

¸2

“ 2
ż 1

´1
pp3pxqq2 dx,

contradicting the proposed inequality.
However, under the given hypotheses, we can prove the following inequality:

˜

ż 1

´1
f pxq dx

¸2

ď
16
7

ż 1

´1
p f3pxqq2 dx.

Indeed, let qpxq “ x3
´ 3x2

` 3x` 7. Then qp´1q “ q1p1q “ q2p1q “ 0, q3xq “ 6 and
ż 1

´1
f3pxqqpxq dx “ r f 2pxqqpxqs1´1 ´

ż 1

´1
q1pxq f 2pxq dx

“ ´rq1pxqq f 1pxqs1´1 `

ż 1

´1
q2pxq f 1pxq dx

“ rq2pxq f pxqs1´1 ´ 6
ż 1

´1
f pxq dx “ ´6

ż 1

´1
f pxq dx.

Therefore, from the Cauchy-Schwarz inequality we have
˜

´6
ż 1

´1
f pxq dx

¸2

“

˜

ż 1

´1
f3pxqqpxq dx

¸2

ď

˜

ż 1

´1
p f3pxqq2 dx

¸˜

ż 1

´1
pqpxqq2 dx

¸

,

from which we easily get the desired inequality (since
ż 1

´1
pqpxqq2 dx “

576
7

).

Solution 3 by proposed by Yunyong Zhang, Chinaunicom, Yunnan, China.
ż 1

´1
f3pxqgpxqdx “

ż 1

´1
gpxqd f 2pxq

“ gpxq f 2pxq
ˇ

ˇ

ˇ

ˇ

1

´1
´

ż 1

´1
f 2pxqdgpxq

“ gpxq f 2pxq
ˇ

ˇ

ˇ

ˇ

1

´1
´

ż 1

´1
f 2pxqg1pxqdx
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“ ´gp´1q f 2p´1q ´
ż 1

´1
g1pxqd f 1pxq

“ ´gp´1q f 2p´1q ´ g1pxq f 1pxq
ˇ

ˇ

ˇ

ˇ

1

´1
`

ż 1

´1
f 1pxqdg1pxq

“ ´gp´1q f 2p´1q ´ g1pxq f 1pxq
ˇ

ˇ

ˇ

ˇ

1

´1
`

ż 1

´1
g2pxqd f pxq

“ ´gp´1q f 2p´1q ´ g1p1q f 1p1q ` g2pxq f pxq
ˇ

ˇ

ˇ

ˇ

1

´1
´

ż 1

´1
f pxqdg2pxq

“ ´gp´1q f 2p´1q ´ g1p1q f 1p1q ` g2p1q f p1q ´
ż 1

´1
f pxqg3pxqdx

Let, gpxq “ ax3
` bx2

` cx` d

then, g1pxq “ 3ax2
` 2bx` c, g2pxq “ 6ax` 2b, g3pxq “ 6a

Let, gp´1q “ 0, g1p1q “ 0, g2p1q “ 0

then, ´a` b´ c` d “ 0, 3a` 2b` c “ 0, 6a` 2b “ 0,

ñ b “ ´3a, c “ 3a, d “ 7a, gpxq “ apx3
´ 3x2

` 3x` 7q

and
ż 1

´1
f3pxqgpxqdx “ ´

ż 1

´1
f pxqg3pxqdx

According to Cauchy-Buniakowsky-Schwarz Inequality:
ˆ
ż

f pxqgpxqdx
˙2

ď

ż

f 2
pxqdx

ż

g2
pxqdx

˜

ż 1

´1
f3pxqgpxqdx

¸2

“

˜

´

ż 1

´1
f pxqg3pxqdx

¸2

ď

ż 1

´1

`

f3pxq
˘2 dx

ż 1

´1

`

gpxq
˘2 dx

ô

˜

ż 1

´1
f pxqdx

¸2

ˆ 36a2
ď

ż 1

´1

`

f3pxq
˘2 dx

ż 1

´1
a2
´

x3
´ 3x2

` 3x` 7
¯2

dx

ô

˜

ż 1

´1
f pxqdx

¸2

ď
1

36

ż 1

´1

`

f3pxq
˘2 dx

ż 1

´1

´

x3
´ 3x2

` 3x` 7
¯2

dx

ô

˜

ż 1

´1
f pxqdx

¸2

ď
1

36

ż 1

´1

`

f3pxq
˘2 dxˆ

576
7

ô

˜

ż 1

´1
f pxqdx

¸2

ď
16
7

ż 1

´1

`

f3pxq
˘2 dx.

It’s
16
7

, not
34

315
.

Also solved by the problem proposer.
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Editor’s Statement: It goes without saying that the problem proposers, as well as the solution
proposers, are the élan vital of the Problems/Solutions Section of SSMJ. As the editor of this Sec-
tion of the Journal, I consider myself fortunate to be in a position to receive, compile and organize
a wealth of proposed ingenious problems and solutions intended for online publication. My un-
wavering gratitude goes to all the amazingly creative contributors. We come together from across
continents because we find intellectual value, joy and satisfaction in mathematical problems, both
in their creation as well as their solution. So that our collective efforts serve us well, I kindly ask
all contributors to adhere to the following guidelines. As you peruse below, you may construe that
the guidelines amount to a lot of work. But, as the samples show, there’s not much to do. Your
cooperation is much appreciated!

Keep in mind that the examples given below are your best guide!

Formats, Styles and Requirements

When submitting proposed problem(s) or solution(s), please send both LaTeX document and pdf
document of your proposed problem(s) or solution(s). There are ways (discoverable from the in-
ternet) to convert from Word to proper LaTeX code. Porposals without a proper LaTeX document
will not be published regrettably.

Regarding Proposed Solutions:

Below is the FILENAME format for all the documents of your proposed solution(s).

#ProblemNumber_FirstName_LastName_Solution_SSMJ

‚ FirstName stands for YOUR first name.

‚ LastName stands for YOUR last name.

Examples:
#1234_Max_Planck_Solution_SSMJ

#9876_Charles_Darwin_Solution_SSMJ

Please note that every problem number is preceded by the sign # .

All you have to do is copy the FILENAME format (or an example below it), paste it and then
modify portions of it to your specs.

Please adopt the following structure, in the order shown, for the presentation of your solution:
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1. On top of the first page of your solution, begin with the phrase:

“Proposed Solution to #**** SSMJ”

where the string of four astrisks represents the problem number.

2. On the second line, write

“Solution proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country, all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s).

3. On a new line, state the problem proposer’s name, affiliation, city and country, just as it ap-
pears published in the Problems/Solutions section.

4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.

7. Below the latter, show the entire solution of the problem.

Here is a sample for the above-stated format for proposed solutions:

Proposed solution to #1234 SSMJ

Solution proposed by Emmy Noether, University of Göttingen, Lower Saxony, Ger-
many.

Problem proposed by Isaac Newton, Trinity College, Cambridge, England.

Statement of the problem:

Compute
n
ÿ

k“0

ˆ

n
k

˙

xkyn´k.

Solution of the problem: . . . . . .
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Regarding Proposed Problems:

For all your proposed problems, please adopt for all documents the following FILENAME for-
mat:

FirstName_LastName_ProposedProblem_SSMJ_YourGivenNumber_ProblemTitle

If you do not have a ProblemTitle, then leave that component as it already is (i.e., ProblemTitle).

The component YourGivenNumber is any UNIQUE 3-digit (or longer) number you like to give
to your problem.

Examples:

Max_Planck_ProposedProblem_SSMJ_314_HarmonicPatterns

Charles_Darwin_ProposedProblem_SSMJ_358_ProblemTitle

Please adopt the following structure, in the order shown, for the presentation of your pro-
posal:

1. On the top of first page of your proposal, begin with the phrase:

“Problem proposed to SSMJ”

2. On the second line, write

“Problem proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s) if any.

3. On a new line state the title of the problem, if any.

4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.

7. Below the latter, show the entire solution of your problem.

Here is a sample for the above-stated format for proposed problems:
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Problem proposed to SSMJ

Problem proposed by Isaac Newton, Trinity College, Cambridge, England.

Principia Mathematica (ÐÝ You may choose to not include a title.)

Statement of the problem:

Compute
n
ÿ

k“0

ˆ

n
k

˙

xkyn´k.

Solution of the problem: . . . . . .

♣ ♣ ♣ Thank You! ♣ ♣ ♣
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