Problems

Ted Eisenberg, Section Editor

This section of the Journal offers readers an opportunity to exchange interesting mathematical problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions can be sent e-mail to <eisenbt013.net>. Solutions to previously stated problems can be seen at <http://www.ssma.org/publications>.

Solutions to the problems stated in this issue should be posted before September 15, 2017

• **5451**: Proposed by Kenneth Korbin, New York, NY

Given triangle ABC with sides $a = 8, b = 19$ and $c = 22$. The triangle has an interior point P where AP, BP, and CP each have positive integer length. Find AP and BP, if $CP = 4$.

• **5452**: Proposed by Roger Izard, Dallas, TX

Let point O be the orthocenter of a given triangle ABC. In triangle ABC let the altitude from B intersect line segment AC at E, and the altitude from C intersect line segment AB at D. If AC and AB are unequal, derive a formula which gives the square of BC in terms of AC, AB, EO, and OD.

• **5453**: Proposed by D.M. Bătinețu-Giurgiu, “Matei Basarab” National College, Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School, Buzău, Romania

If $a, b, c \in (0, 1)$ or $a, b, c \in (1, \infty)$ and m, n are positive real numbers, then prove that

$$\frac{\log_a b + \log_a c}{m + n \log_a a} + \frac{\log_b c + \log_b a}{m + n \log_b b} + \frac{\log_c a + \log_c b}{m + n \log_c c} \geq \frac{6}{m + n}$$

• **5454**: Proposed by Arkady Alt, San Jose, CA

Prove that for integers k and l, and for any $\alpha, \beta \in (0, \frac{\pi}{2})$, the following inequality holds:

$$k^2 \tan \alpha + l^2 \tan \beta \geq \frac{2kl}{\sin(\alpha + \beta)} - (k^2 + l^2) \cot(\alpha + \beta).$$

• **5455**: Proposed by José Luis Díaz-Barrero, Barcelona Tech, Barcelona, Spain

Find all real solutions to the following system of equations:

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{abc}$$

$$a + b + c = abc + \frac{8}{27} (a + b + c)^3$$
Let \(k \) be a positive integer. Calculate
\[
\lim_{x \to \infty} e^{-x} \sum_{n=k}^{\infty} (-1)^n \binom{n}{k} \left(e^x - 1 - x - \frac{x^2}{2!} - \cdots - \frac{x^n}{n!} \right).
\]

Solutions

5433: Proposed by Kenneth Korbin, New York, NY

Solve the equation: \(\sqrt[4]{x} + x^2 = \sqrt[4]{x} + \sqrt[4]{x - x^2}, \) with \(x > 0. \)

Solution 1 by Anthony J. Bevelacqua, University of North Dakota, Grand Forks, ND

Let \(f(x) = \sqrt[4]{x} + \sqrt[4]{x - x^2} - \sqrt[4]{x + x^2}. \) Then \(f(x) \) is continuous on \([0,1]\). We have \(f(1/2) > 0 \) and \(f(1) < 0. \) By the Intermediate Value Theorem our original equation has at least one solution with \(x > 0. \)

Now consider
\[
\sqrt[4]{x + x^2} = \sqrt[4]{x} + \sqrt[4]{x - x^2} \implies \sqrt[4]{1 + x} = 1 + \sqrt[4]{1 - x}
\]
\[
\implies \sqrt[4]{1 + x} - \sqrt[4]{1 - x} = 1 \implies \sqrt[4]{1 + x} - 2 \sqrt[4]{1 - x^2} + \sqrt[4]{1 - x} = 1 \implies \sqrt[4]{1 + x} + \sqrt[4]{1 - x} = 1 + 2 \sqrt[4]{1 - x^2} \implies 1 + x + 2 \sqrt[4]{1 - x^2} + 1 - x = 1 + 4 \sqrt[4]{1 - x^2} + 4 \sqrt[4]{1 - x^2} \implies 1 - 2 \sqrt[4]{1 - x^2} = 4 \sqrt[4]{1 - x^2} \implies 1 - 4 \sqrt[4]{1 - x^2} + 4(1 - x^2) = 16 \sqrt[4]{1 - x^2} \implies 5 - 4x^2 = 20(1 - x^2) \implies 25 - 40x^2 + 16x^4 = 400(1 - x^2) \implies 16x^4 + 360x^2 - 375 = 0
\]

As a quadratic in \(x^2 \) the roots of this polynomial are
\[
x^2 = \frac{-360 \pm 160\sqrt{6}}{32} = -\frac{45 \pm 20\sqrt{6}}{4}
\]

and so
\[
x = \pm \frac{\sqrt{-45 \pm 20\sqrt{6}}}{2}
\]

This is a positive real number only if we choose both signs positive. Thus our original equation has at most one positive real solution.

Our last two paragraphs show that
\[
x = \frac{\sqrt{20\sqrt{6} - 45}}{2}.
\]
is the unique positive real solution to our original equation.

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State University, San Angelo, TX

Since \(x > 0 \), we lose no solutions if we divide by \(\sqrt[4]{x} \) to obtain

\[
\sqrt{1+x} = 1 + \sqrt{1-x}.
\]

If we let \(X = \sqrt{1+x} \) and \(Y = \sqrt{1-x} \), then \(X^4 + Y^4 = 2 \) and we can solve for \(XY \) in the following steps:

\[
\begin{align*}
X - Y &= 1 \\
(X - Y)^4 &= 1 \\
X^4 - 4X^3Y + 6X^2Y^2 - 4XY^3 + Y^4 &= 1 \\
X^4 + Y^4 - 2XY(2X^2 - 3XY + 2Y^2) &= 1 \\
-2XY[2(X - Y)^2 + XY] &= -1 \\
2XY(XY + 2) &= 1 \\
2X^2Y^2 + 4XY - 1 &= 0 \\
XY &= \frac{-2 \pm \sqrt{6}}{2}.
\end{align*}
\]

The condition \(XY = \sqrt{1-x^2} \geq 0 \) implies that

\[
\sqrt{1-x^2} = \frac{\sqrt{6} - 2}{2}
\]

\[
1 - x^2 = \left(\frac{\sqrt{6} - 2}{2} \right)^4 = \frac{49 - 20\sqrt{6}}{4}
\]

\[
x^2 = 1 - \frac{49 - 20\sqrt{6}}{4} = \frac{20\sqrt{6} - 45}{4}.
\]

Because \(x > 0 \), our solution is

\[
x = \frac{\sqrt{20\sqrt{6} - 45}}{2}.
\]

Solution 3 by Brian D. Beasley, Presbyterian College, Clinton, SC

Solution. Since \(x > 0 \), we may divide the given equation by \(\sqrt{x} \) to produce

\[
\sqrt{1+x} = 1 + \sqrt{1-x}.
\]

Squaring both sides then yields \(\sqrt{1+x} = 1 + 2\sqrt{1-x} + \sqrt{1-x} \), or \(\sqrt{1+x} - \sqrt{1-x} - 1 = 2\sqrt{1-x} \). Squaring yet again produces

\[
(1+x) + (1-x) + 1 - 2\sqrt{1+x} + 2\sqrt{1-x} - 2\sqrt{1-x^2} = 4\sqrt{1-x},
\]

or \(3 - 2\sqrt{1-x^2} = 2\sqrt{1+x} + 2\sqrt{1-x} \). We square once more to obtain

\[
9 - 12\sqrt{1-x^2} + 4(1-x^2) = 4(1+x) + 4(1-x) + 8\sqrt{1-x^2}
\]
and thus $5 - 4x^2 = 20\sqrt{1 - x^2}$. Squaring for the last time yields
$25 - 40x^2 + 16x^4 = 400(1 - x^2)$ and hence $16x^4 + 360x^2 - 375 = 0$. Finally, the only real positive solution of this equation is
$$x = \sqrt{-\frac{45}{4} + 5\sqrt{6}} = \frac{\sqrt{-45 + 20\sqrt{6}}}{2}.$$

Addendum. It is interesting to note that this solution is approximately 0.99872354, very close to 1. In particular, this implies that $49/4$ is a good rational approximation of $5\sqrt{6}$, which also means that $7/2$ is a good rational approximation of $\sqrt{150}$.

Also solved by Arkady Alt, San Jose, CA; Hafiz I. Arshagi, Guilford Technical Community College, Jamestown, NC; Jeremiah Bartz, University of North Dakota, Grand Forks, ND; Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland Beach, FL; Paul M. Harms, North Newton, KS; Aykut Ismailov, Shumen, Bulgaria; Kee-Wai Lau, Hong Kong, China; David E. Manes, SUNY at Oneonta, Oneonta, NY; Boris Rays, Brooklyn, NY; Brandon Richardson (student), Auburn University at Montgomery, AL; Toshihiro Shimizu, Kawasaki, Japan; Trey Smith, Angelo State University, San Angelo, TX; Albert Stadler, Herrliberg, Switzerland; Anna V. Tomova (three solutions), Varna, Bulgaria, and the proposer.

5434: Proposed by Titu Zvonaru, Comnesti, Romania and Neculai Stanciu, “George Emil Palade” General School, Buzău, Romania

Calculate, without using a calculator or log tables, the number of digits in the base 10 expansion of 2^{96}.

Solution 1 by Ed Gray, Highland Beach, FL

$$(2^{12})^8 = 2^{96} > (4 \cdot 10^3)^8 = 4^8 \cdot 10^{24} > 6 \cdot 10^4 \cdot 10^{24} = 6 \cdot 10^{28}.$$

Also
$$(2^8)^{12} = 2^{96} < (3 \cdot 10^2)^{12} = 3^{12} \cdot 10^{24} < (6 \cdot 10^5) \cdot 10^{24} = 6 \cdot 10^{29}.$$

Therefore, $6 \cdot 10^{28} < 2^{96} < 6 \cdot 10^{29}$. So $n = 29$.

Solution 2 by Paul M. Harms, North Newton, KS

We see that
$$4(10^3) < 2^{12} = 4096 < 4.1(10^4).$$

Then
$$16(10^6) < 2^{24} < 16.81(10^6) < 17(10^6).$$

Taking the fourth power of the appropriate terms we obtain,
$$16^4(10^{24}) = 65536(10^{24}) = 0.65536(10^{29}) < 2^{96} < 17^4(10^{24}) = 83521(10^{24}) = 0.83521(10^{29}).$$

Since 2^{96} is bounded by integers who have 29 digits in the base 10 expansion, the integer 2^{96} must also have 29 digits in its base 10 expansion.
Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

The required number of digits is 29 because, as we shall show, \(10^{28} \leq 2^{96} < 10^{29}\). More exactly, we shall prove that \(1 < \frac{2^{96}}{10^{28}} < 10\). Since

\[
\frac{2^{96}}{10^{28}} = \left(\frac{2^{24}}{10^7}\right)^4 = \left(\frac{2^{12}}{10^7}\right)^4 = \left(\frac{4096^2}{10^7}\right)^4 = \left(\frac{1,6777216 \cdot 10^7}{10^7}\right)^4 = (1,6777216)^4,
\]

we obtain that

\[1^4 < \frac{2^{96}}{10^{28}} < 1.68^4,\]

that is \(1 < \frac{2^{96}}{10^{28}} < (2.8224)^2\) and, hence, \(1 < \frac{2^{96}}{10^{28}} < 3^2 < 10\).

Note: another way to show that \(10^{28} < 2^{96}\) is, for example:

\[
5^2 < 2^5 \quad \Rightarrow \quad 5^3 < 2^9 \quad \Rightarrow \quad 5^5 < 2^{12} \quad \Rightarrow \quad 5^7 < 2^{17} \quad \Rightarrow \quad 2^7 \cdot 5^7 < 2^{24} \quad \Rightarrow \quad (10^7)^4 < (2^{24})^4 \quad \Rightarrow \quad 10^{28} < 2^{96}.
\]

Solution 4 by Toshihiro Shimizu, Kawasaki, Japan

Since \(10^3 < 2^{10} = 1024 < 1.03 \times 10^3\) and \(2^{96} = (2^{10})^9 \times 2^6 = (2^{10})^9 \times 10 \times 6.4\) we have

\[6.4 \times 10 \times 10^3 \times 9 < 2^{96} < 6.4 \times 10 \times 10^3 \times 9 \times (1.03)^9.\]

We evaluate 1.03\(^9\). We have \(1.03 \times 1.03 \times 1.03 = 1.0609 \times 1.03 = 1.092727 < 1.1\) and \(1.1 \times 1.1 \times 1.1 = 1.331 < 1.4\) (I never use calculator.) Therefore, we have

\[10^{28} < 6.4 \times 10^{28} < 2^{96} < 6.4 \times 1.4 \times 10^{28} = 8.96 \times 10^{28} < 10^{29}.
\]

Therefore, the number of digits in \(2^{96}\) is 29.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Hatem I. Arshagi, Guilford Technical Community College, Jamestown, NC; Kee-Wai Lau, Hong Kong, China; Albert Stadler, Herrliberg, Switzerland; David Stone and John Hawkins, Georgia Southern University, Statesboro, GA, and the proposers.

• 5435: Proposed by Valcho Milchev, Petko Rachov Slaveikov Secondary School, Bulgaria

Find all positive integers \(a\) and \(b\) for which \(\frac{a^4 + 3a^2 + 1}{ab - 1}\) is a positive integer.

Solution 1 by Moti Levy, Rehovot, Israel

This solution is based on similar problem and solution which appeared in [1].
\[
\frac{a^4 + 3a^2 + 1}{ab - 1}
\] may be replaced by equivalent expression with symmetric polynomial in the numerator.

Indeed,
\[
\frac{a^4 + 3a^2 + 1}{ab - 1} = a^2 (a^2 + b^2 + 3) - (ab - 1)(ab + 1).
\]

Now, \(a\) and \(ab - 1\) satisfy the equation \(b \cdot a + (-1) \cdot (ab - 1) = 1\), which implies that \(a\)
and \(ab - 1\) are relatively prime and clearly \(a^2\) and \(ab - 1\) are also relatively prime.
Thus, \(\frac{a^4 + 3a^2 + 1}{ab - 1}\) is a positive integer if and only if \(\frac{a^2 + b^2 + 3}{ab - 1}\) is a positive integer.

We call the ordered pair \((a, b)\) a solution if
\[
\frac{a^2 + b^2 + 3}{ab - 1} = m,
\]
where \(m\) is a positive integer. The set of solutions is not empty since \((1, 2)\) is a solution.

We exclude \((a, a)\) from the set of solutions since \(2a^2 + 3\) is not a positive integer for all \(a > 0\).
Equation (1) is re-written as follows
\[
a^2 - mab + b^2 = -(m + 3).
\]

It is easily verified (see (3)) that if \((a, b)\) is a solution then \((ma - b, a)\) is a solution as well.

\[
(ma - b)^2 - m (ma - b) a + a^2 = a^2 - mab + b^2,
\]

Let \((a_0, b_0)\) be the “smallest” solution in the sense that \(a_0 + b_0 \leq a + b\), where \((a, b)\) is any solution.

\[
a_0 + b_0 \leq (ma_0 - b_0) + a_0,
\]
or
\[
\frac{2b_0}{a_0} \leq m.
\]

\[
\frac{2b_0}{a_0} \leq \frac{a_0^2 + b_0^2 + 3}{a_0b_0 - 1}
\]
\[
0 \leq -2a_0b_0^2 + 2b_0 + a_0^3 + 3a_0
\]

Let \((a_0, a_0 + k)\) be a solution. Then substituting in (5) gives,
\[
0 \leq -2a_0 (a_0 + k)^2 + 2 (a_0 + k) + a_0^3 + 3a_0
\]
\[
= -2k^2a_0 - 4ka_0^2 + 2k - a_0^3 + 5a_0.
\]

Solving \(-2k^2a_0 - 4ka_0^2 + 2k - a_0^3 + 5a_0 \geq 0\), we get
\[
\frac{1}{2a_0} \left(1 - 2a_0^2 - \sqrt{6a_0^2 + 2a_0^4 + 1}\right) \leq k \leq \frac{1}{2a_0} \left(1 - 2a_0^2 + \sqrt{6a_0^2 + 2a_0^4 + 1}\right),
\]
hence, \(k\) will have positive values only if
\[
\sqrt{6a_0^2 + 2a_0^4 + 1} + 1 \geq 2a_0.
\]

This inequality holds for \(a_0 = 1\) and \(a_0 = 2\). For \(a_0 = 1\), possible values for \(k\) are 1 or 2; for \(a_0 = 2\), possible value for \(k\) is 1.
Thus we have to check the following set of potential solutions: \{\((1, 2), (1, 3), (2, 1) \) \}. Clearly (1, 2) and (2, 1) are solutions, but (1, 3) is not.

For (1, 2) and (2, 1) the value of \(m \) is 8. We conclude that the sole value of \(m \) is 8.

It follows from (3) that the pairs \((a_n, b_n)\) (and by symmetry \((b_n, a_n)\)), which satisfy condition (1) are expressed by the recurrence formulas

\[
\begin{align*}
a_{n+1} &= 8a_n - b_n, \\
b_{n+1} &= a_n,
\end{align*}
\]

which are equivalent to the recurrence formulas

\[
\begin{align*}
a_{n+2} &= 8a_{n+1} - a_n, \\
b_{n+2} &= 8b_{n+1} - b_n.
\end{align*}
\]

We have two sets of initial conditions:

1) \(a_0 = 1, a_1 = 6, b_0 = 2, b_1 = 1 \); the pairs resulting from these initial conditions are \((1, 2), (6, 1), (47, 6), (370, 47), \ldots \).

\[
\begin{align*}
a_n &= \left(\frac{1}{2} - \frac{1}{\sqrt{15}} \right) \left(4 - \sqrt{15} \right)^n + \left(\frac{1}{2} + \frac{1}{\sqrt{15}} \right) \left(4 + \sqrt{15} \right)^n, \\
b_n &= \left(1 + \frac{7}{2\sqrt{15}} \right) \left(4 - \sqrt{15} \right)^n + \left(1 - \frac{7}{2\sqrt{15}} \right) \left(4 + \sqrt{15} \right)^n.
\end{align*}
\]

2) \(a_0 = 2, a_1 = 15, b_0 = 1, b_1 = 2 \); the pairs resulting from these initial conditions are \((2, 1), (15, 2), (118, 15), (929, 118), \ldots \).

\[
\begin{align*}
a_n &= \left(1 - \frac{7}{2\sqrt{15}} \right) \left(4 - \sqrt{15} \right)^n + \left(1 + \frac{7}{2\sqrt{15}} \right) \left(4 + \sqrt{15} \right)^n, \\
b_n &= \left(\frac{1}{2} + \frac{1}{\sqrt{15}} \right) \left(4 - \sqrt{15} \right)^n + \left(\frac{1}{2} - \frac{1}{\sqrt{15}} \right) \left(4 + \sqrt{15} \right)^n.
\end{align*}
\]

Reference:

Solution 2 by Anthony Bevelacqua, University of North Dakota, Grand Forks, ND

1) There are no solutions to our problem with \(a = b \). We have \(a^4 + 3a^2 + 1 \equiv 5 \pmod{(a^2 - 1)} \). Assume there is a solution with \(a = b \). Then \(a^2 - 1 \) divides \(a^4 + 3a^2 + 1 \) so \(a^4 + 3a^2 + 1 \equiv 0 \pmod{(a^2 - 1)} \). Thus \(5 \equiv 0 \pmod{(a^2 - 1)} \) and so \(a^2 - 1 \) divides 5. But then \(a^2 = 2 \) or \(a^2 = 6 \), a contradiction in either case.

2) The only solutions with \(a \leq 4 \) are \((a, b) = (1, 2), (2, 1), (1, 6) \) and \((2, 15) \). Suppose \((a, b)\) is a solution to our problem. If \(a = 1 \) then \(b - 1 \) divides 5 so \(b - 1 = 1 \) or \(b - 1 = 5 \). Both \((1, 2)\) and \((1, 6)\) are solutions. If \(a = 2 \) then \(2b - 1 \) divides 29 so \(2b - 1 = 1 \) or \(2b - 1 = 29 \). Both \((2, 1)\) and \((2, 15)\) are solutions. If \(a = 3 \) then \(3b - 1 \) divides 109 so \(3b - 1 = 1 \) or \(3b - 1 = 109 \), a contradiction. If \(a = 4 \) then \(4b - 1 \) divides 305 = 5 \cdot 61 \) so \(4b - 1 \in \{1, 5, 61, 305\} \), a contradiction.
3) \(ab - 1\) divides \(a^4 + 3a^2 + 1\) if and only if \(ab - 1\) divides \(a^2 + b^2 + 3\).
We have
\[
(ab - 1)(a^3b + 3ab + a^2 + 3) = a^4b^2 + 3a^2b^2 + a^3b + 3ab - a^2b - 3ab - a^2 - 3
\]
and so
\[
b^2(a^4 + 3a^2 + 1) - (ab - 1)(a^3b + 3ab + a^2 + 3) = a^2 + b^2 + 3.
\]
Thus if \(ab - 1\) divides \(a^4 + 3a^2 + 1\) then \(ab - 1\) divides \(a^2 + b^2 + 3\). Conversely suppose \(ab - 1\) divides \(a^2 + b^2 + 3\). Then \(ab - 1\) divides \(b^2(a^4 + 3a^2 + 1)\). Since \(ab - 1\) and \(b^2\) are relatively prime we have that \(ab - 1\) divides \(a^4 + 3a^2 + 1\).

Now if \(k > 0\) and \((a, b)\) is a solution to \(a^2 + b^2 + 3 = k(ab - 1)\) then \(b\) is a root of the polynomial \(a^2 + x^2 + 3 = k(ax - 1)\) which can be rewritten as
\[
x^2 - kax + (a^2 + 3 + k) = 0.
\]
Thus if \(b'\) is the other root we have, by Vieta’s formulas, \(b + b' = ka\) and \(bb' = a^2 + 3 + k\). The first shows that \(b'\) is an integer and the second shows that \(b' > 0\). Thus \((a, b')\) is another solution to \(a^2 + b^2 + 3 = k(ab - 1)\).

4) If \(ab - 1\) divides \(a^2 + b^2 + 3\) then \(a^2 + b^2 + 3 = 8(ab - 1)\). Suppose there are positive integers \(a, b, k\) such that \(a^2 + b^2 + 3 = k(ab - 1)\). For this fixed \(k\) let \(S\) be the set of all positive integer pairs \((a, b)\) such that \(a^2 + b^2 + 3 = k(ab - 1)\). Choose an \((a, b)\) \(\in S\) such that \(a + b\) is minimal. Without loss of generality we have \(a \leq b\). Since \(a \neq 1\) we have \(a < b\). Now \((a, b')\) is another solution. Since \(a + b\) is minimal we have \(a + b \leq a + b'\) and hence \(b \leq b'\). Thus
\[
b^2 \leq bb' = a^2 + 3 + k \implies k \geq b^2 - a^2 - 3
\]
and so
\[
a^2 + b^2 + 3 \geq k(ab - 1)
\]
\[
\geq (b^2 - a^2 - 3)(ab - 1)
\]
\[
= ab^3 - b^2 - a^3b + a^2 - 3ab + 3.
\]
Hence
\[
3ab + 2b^2 \geq ab^3 - a^3b \implies 3a + 2b \geq ab^2 - a^3.
\]
Since \(a < b\) we have \(3a + 2b < 5b\) and \(ab^2 - a^3 = a(b + a)(b - a) > ab\). Thus \(5b > ab\) and so \(a < 5\). By 2) the only possible \((a, b)\) are then \((1, 2), (1, 6), \) and \((2, 15)\). Each of these gives \(k = 8\).

Thus 3) and 4) show that our original problem is equivalent to finding all positive integers \(a\) and \(b\) such that \(a^2 + b^2 + 3 = 8(ab - 1)\). We could rewrite this as \((a - 4b)^2 - 15b^2 = -11\) and apply the theory of equations of the form \(x^2 - Dy^2 = N\) as found in, say, section 58 of Nagell’s *Number Theory*. Instead we will determine the solutions by “Vieta jumping” as in the proof of (4).

Let \(S\) be the set of all positive integers pairs \((a, b)\) such that \(a^2 + b^2 + 3 = 8(ab - 1)\). Clearly if \((a, b) \in S\) then \((b, a) \in S\), and, by 1) there are no \((a, b) \in S\) with \(a = b\). Recall that if \((a, b) \in S\) then \((b, b) \in S\) where \(b + b' = 8a\) and \(bb' = a^2 + 11\).

5) For any \((a, b) \in S\) define \(\rho(a, b) = (b', a)\) and \(\lambda(a, b) = (b, 8b - a)\). Then \(\rho(a, b) \in S\), \(\lambda(a, b) \in S\), and \(\lambda(\rho(a, b)) = (a, b)\).
Let \((a, b) \in S\). We have \((a, b') \in S\) and hence \(\rho(a, b) = (b', a) \in S\). Now
\[
 b^2 + (8b - a)^2 + 3 = 64b^2 - 16ab + (a^2 + b^2 + 3)
 = 64b^2 - 16ab + 8(ab - 1)
 = 64b^2 - 8ab - 8
 = 8(b(8b - a) - 1)
\]
so \(\lambda(a, b) = (b, 8b - a) \in S\). Finally,
\[
 \lambda(\rho(a, b)) = \lambda(b', a) = (a, 8a - b')
\]
where
\[
 8a - b' = 8a - \frac{a^2 + 11}{b} = \frac{8ab - a^2 - 11}{b} = \frac{b^2}{b} = b.
\]

6) The only \((a, b) \in S\) such that \(a < b \leq 10\) are \((a, b) = (1, 2)\) and \((1, 6)\).

Since \(a^2 + b^2 + 3 \equiv 0 \mod 8\) we see that \(a\) and \(b\) must have opposite parity and neither can be divisible by 4. Moreover the only such solutions with \(a\) or \(b\) less than 4 are \((1, 2)\) and \((1, 6)\) by 2). This leaves only
\[
 (a, b) = (5, 6), (6, 7), (6, 9), (5, 10), (7, 10), (9, 10)
\]
and none of these satisfy \(a^2 + b^2 + 3 = 8(ab - 1)\).

7) Let \((a, b) \in S\) such that \(b \geq 11\). If \(a < b\) then \(b' < a\).

Suppose first that \(b' \leq 10\). Assume \(a \leq b'\). Since \((a, b') \in S\) we have \(a \neq b'\). Thus \(a < b' \leq 10\). So, by 6), we must have \(a = 1\). But if \(a = 1\) we have \(b = 1\) or \(b = 6\), a contradiction with \(b \geq 11\). Hence \(b' < a\).

Suppose now that \(b' \geq 11\). Again assume \(a \leq b'\). Then, as in the last paragraph, \(a < b'\).

We have
\[
 bb' = a^2 + 11 < (b')^2 + 11 \implies b < b' + \frac{11}{b'} \leq b' + 1
\]
and so \(b \leq b'\). Now swapping \(b\) and \(b'\) we have
\[
 bb' = a^2 + 11 < b^2 + 11 \implies b' < b + \frac{11}{b} \leq b + 1
\]
and so \(b' \leq b\). Thus \(b = b'\). Since \(8a = b + b' = 2b\) we have \(b = 4a\). But then
\[
 a^2 + 16a^2 + 3 = 8(a^2 - 1) \implies 11 = 15a^2,
\]
a contradiction. Hence \(b' < a\).

Finally,

8) \((a, b) \in S\) if and only if \(\{a, b\} = \{s_n, s_{n+1}\}\) or \(\{a, b\} = \{t_n, t_{n+1}\}\) for \(n \geq 0\) where
\[
 s_0 = 1, s_1 = 2, \text{ and } s_n = 8s_{n-1} - s_{n-2} \text{ for } n \geq 2
\]
and
\[
 t_0 = 1, t_1 = 6, \text{ and } t_n = 8t_{n-1} - t_{n-2} \text{ for } n \geq 2.
\]
Note that $\lambda^n(1, 2) = (s_n, s_{n+1})$ and $\lambda^n(1, 6) = (t_n, t_{n+1})$ for all $n \geq 0$.

Since $(1, 2)$ and $(1, 6) \in S$ we see that $(a, b) \in S$ for any $\{a, b\} = \{s_n, s_{n+1}\}$ or $\{a, b\} = \{t_n, t_{n+1}\}$ and $n \geq 0$ by (5).

Now suppose $(a, b) \in S$. Since $(b, a) \in S$ as well, we can suppose without loss of generality that $a < b$. By 5) and 7) there exists an integer $d \geq 0$ such that $\rho^d(a, b) = (a^*, b^*)$ with $a^* < b^* \leq 10$. By (6) we must have $\rho^d(a, b) = (1, 2)$ or $\rho^d(a, b) = (1, 6)$. Since $(a, b) = \lambda^d(\rho^d(a, b))$ we have $(a, b) = \lambda^d(1, 2)$ or $(a, b) = \lambda^d(1, 6)$.

Thus $ab - 1$ divides $a^4 + 3a^2 + 1$ if and only if a and b are consecutive elements of either of the sequences s_n or t_n given above. Since the first few terms of s_n are $1, 2, 15, 118, 929, 7314, 57583, \ldots$ and the first few terms of t_n are $1, 6, 47, 370, 2913, 22934, 180559, \ldots$ the first few solutions to our problem (with $a \leq b$) are

$$ (a, b) = (1, 2), (2, 15), (15, 118), (118, 929), (929, 7314), (7314, 57583), \ldots $$

and

$$ (a, b) = (1, 6), (6, 47), (47, 370), (370, 2913), (2913, 22934), (22934, 180559), \ldots $$

Also solved by Ed Gray, Highland Beach, FL; Kenneth Korbin, New York, NY; Toshihiro Shimizu, Kawasaki, Japan; Anna V. Tomova (three solutions), Varna, Bulgaria, and the proposer.

5436: Proposed by Arkady Alt, San Jose, CA

Find all values of the parameter t for which the system of inequalities

$$ A = \begin{cases} \sqrt{x} + t \geq 2y \\ \sqrt{y} + t \geq 2z \\ \sqrt{z} + t \geq 2x \end{cases} $$

a) has solutions;
b) has a unique solution.

Solution by the Proposer

a) Note that $(A) \iff \begin{cases} t \geq 16y^4 - x \\ t \geq 16z^4 - y \iff 3t \geq 16y^4 - x + 16z^4 - y + 16x^4 - z = \\ t \geq 16x^4 - z \end{cases}$

$$(16x^4 - x) + (16y^4 - y) + (16z^4 - z) \geq 3 \min_{x} (16x^4 - x) \implies t \geq \min_{x} (16x^4 - x).$$

For $x \in \left(0, \frac{1}{16}\right)$, using the AM-GM Inequality, we obtain

$$ x - 16x^4 = x (1 - 16x^3) = \frac{3}{4} x (1 - 16x^3)^{\frac{3}{4}} = \frac{3}{4} \left(\frac{48x^3}{3} \right) \left(\frac{1 - 16x^3}{3}\right)^{\frac{3}{4}} \leq \frac{3}{16} \cdot \left(\frac{3}{4}\right)^{\frac{4}{4}} = \frac{3}{16}. $$

And since $x - 16x^4 \leq 0$ for
then for all \(x \) the inequality \(x - 16x^4 \leq \frac{3}{16} \) holds. Since the upper bound is \(\frac{3}{16} \) for values \(x - 16x^4 \) is attainable when \(x = \frac{1}{4} \), then \(\max (x - 16x^4) = \frac{3}{16} \iff \min_x (16x^4 - x) = -\frac{3}{16} \).

Thus \(t \geq -\frac{3}{16} \) is a necessary condition for the solvability of system \((A)\).

Let’s prove sufficiency.

Let \(t \geq -\frac{3}{16} \). Since function \(h(x) \) is continuous in \(\mathbb{R} \) and \(\min_x (16x^4 - x) = -\frac{3}{16} \), then \(\left[-\frac{3}{16}, \infty \right) \) is the range of \(h(x) \). This means that for any \(t \geq -\frac{3}{16} \) the equation \(16x^4 - x = t \) has solution in \(\mathbb{R} \) and since for any \(u \) which is a solution of the equation \(16x^4 - x = t \), the triple \((x, y, z) = (u, u, u,)\) is a solution of the system \((A)\) then for such \(t \) system \((A)\) solvable as well.

Remark.

Actually the latest reasoning about the solvability of system \((A)\) if \(t \geq -\frac{3}{16} \) is redundant for \((a)\) because suffices to note that for such \(t \) the triple \((x, y, z) = \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right)\) satisfies to \((A)\).

But for \((b)\) criteria of solvability of equation \(16x^4 - x = t \) in form of inequality \(t \geq -\frac{3}{16} \) is important.

b) Note that system \((A)\) always have more the one solution if \(t > -\frac{3}{16} \).

Indeed, let for any \(t_1, t_2 \in \left(-\frac{3}{16}, t \right) \) such that \(t_1 \neq t_2 \) equation \(16u^4 - u = t_i \) has solution \(u_i, i = 1, 2 \).

Then \(u_1 \neq u_2 \) and two distinct triples \((u_1, u_1, u_1), (u_2, u_2, u_2)\) satisfy to the system \((A)\).

Let \(t = -\frac{3}{16} \). Then \(-\frac{3}{16} \geq 16y^4 - x \iff \frac{3}{16} + x - y \geq 16y^4 - y \geq -\frac{3}{16} \).

Hereof \(x - y \geq 0 \iff x \geq y \). Similarly \(-\frac{3}{16} \geq 16z^4 - y \) and \(-\frac{3}{16} \geq 16x^4 - z \) implies \(y \geq z \) and \(z \geq x \), respectively. Thus in that case \(x = y = z \) and all solutions of the system \((A)\) are represented by solutions of one equation \(16x^4 - x = -\frac{3}{16} \iff 16x^4 - x + \frac{3}{16} = 0 \iff 256x^4 - 16x + 3 = 0 \) which has only root \(\frac{1}{4} \) because \(256x^4 - 16x + 3 = (4x - 1)^2 (16x^2 + 8x + 3) \).

Thus, system \((A)\) has unique solution iff \(t = \frac{1}{4} \).

Also solved by Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; Moti Levy, Rehovot, Israel; David Stone and John Hawkins, Georgia.
Let \(f : C - \{2\} \to C \) be the function defined by \(f(z) = \frac{2 - 3z}{z - 2} \). If \(f^n(z) = (f \circ f \circ \ldots \circ f)(z) \), then compute \(f^n(z) \) and \(\lim_{n \to +\infty} f^n(z) \).

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State University, San Angelo, TX

Assume first that \(z \neq 2 \) and \(f^n(z) \) exists for all \(n \geq 1 \). Then, direct computation yields

\[
 f^2(z) = \frac{10 - 11z}{5z - 6} \quad \text{and} \quad f^3(z) = \frac{42 - 43z}{21z - 22}.
\]

(1)

When these are combined with the formula for \(f(z) \), it appears that there is a sequence \(\{x_n\} \) of positive integers such that

\[
 f^n(z) = \frac{2x_n - (2x_n + 1)z}{x_nz - (x_n + 1)}
\]

(2)

for all \(n \geq 1 \). Since \(f(z) = \frac{2 - 3z}{z - 2} \), we have \(x_1 = 1 \). Further, if (2) holds for some \(n \geq 1 \), then

\[
 f^{n+1}(z) = f(f^n(z))
\]

\[
 = \frac{2 - 3f^n(z)}{f^n(z) - 2}
\]

\[
 = \frac{2 - 3 \left[\frac{2x_n - (2x_n + 1)z}{x_nz - (x_n + 1)} \right]}{\left[\frac{2x_n - (2x_n + 1)z}{x_nz - (x_n + 1)} \right] - 2}
\]

\[
 = \frac{2 \left[x_nz - (x_n + 1) \right] - 3 \left[2x_n - (2x_n + 1)z \right]}{\left[2x_n - (2x_n + 1)z \right] - 2 \left[x_nz - (x_n + 1) \right]}
\]

\[
 = \frac{(8x_n + 2) - (8x_n + 3)z}{(4x_n + 1)z - (4x_n + 2)}. \tag*{(4)}
\]

This suggests that \(x_{n+1} = 4x_n + 1 \) for \(n \geq 1 \). These conditions on \(\{x_n\} \) are consistent with the formula for \(f(z) \) and property (2). Note finally that

\[
 x_1 = 1 = \frac{3}{3} = \frac{4 - 1}{3}, \quad x_2 = 5 = \frac{15}{3} = \frac{4^2 - 1}{3}, \quad \text{and} \quad x_3 = 21 = \frac{63}{3} = \frac{4^3 - 1}{3}.
\]
This leads us to conjecture that \(x_n = \frac{4^n - 1}{3} \) and hence,

\[
f^n(z) = 2 \left(\frac{4^n - 1}{3} \right) - \left[2 \left(\frac{4^n - 1}{3} \right) + 1 \right] \frac{z}{(4^n - 1) z - (4^n + 2)} = 2 \left(\frac{4^n - 1}{3} \right) - \left(2 \cdot 4^n + 1 \right) \frac{z}{(4^n - 1) z - (4^n + 2)}
\]

for all \(n \geq 1 \).

If \(f^n(z) \) exists for all \(n \geq 1 \), let \(P(n) \) be the statement

\[
f^n(z) = 2 \left(\frac{4^n - 1}{3} \right) - \left(2 \cdot 4^n + 1 \right) \frac{z}{(4^n - 1) z - (4^n + 2)}.
\]

If \(n = 1 \),

\[
\frac{2 (4 - 1) - (2 \cdot 4 + 1) z}{(4 - 1) z - (4 + 2)} = \frac{6 - 9z}{3z - 6} = \frac{2 - 3z}{z - 2}
\]

and thus, \(P(1) \) is true. Assume that \(P(n) \) is true, i.e.,

\[
f^n(z) = 2 \left(\frac{4^n - 1}{3} \right) - \left(2 \cdot 4^n + 1 \right) \frac{z}{(4^n - 1) z - (4^n + 2)}
\]

for some \(n \geq 1 \). Then,

\[
f^{n+1}(z) = f(f^n(z))
\]

\[
= 2 - 3 \left[2 \left(\frac{4^n - 1}{3} \right) - \left(2 \cdot 4^n + 1 \right) \frac{z}{(4^n - 1) z - (4^n + 2)} \right] - 2
\]

\[
= 2 \left[(4^n - 1) z - (4^n + 2) \right] - 3 \left[2 \left(\frac{4^n - 1}{3} \right) - \left(2 \cdot 4^n + 1 \right) \frac{z}{(4^n - 1) z - (4^n + 2)} \right] - 2 \left[(4^n - 1) z - (4^n + 2) \right]
\]

\[
= \frac{2 (4^n - 1) + 3 \left(2 \cdot 4^n + 1 \right) z - [2 (4^n + 2) + 6 (4^n - 1) \left(2 \cdot 4^n + 1 \right) z]}{2 (4^n - 1) + 2 (4^n + 2) - [2 \cdot 4^n + 1 + 2 (4^n - 1) \left(2 \cdot 4^n + 1 \right) z]}
\]

\[
= \frac{\left(2 \cdot 4^{n+1} + 1 \right) z - 2 \left(4^{n+1} + 1 \right) \left(4^{n+1} + 2 \right)}{(4^{n+1} - 1) z - (4^{n+1} + 2)}
\]

and therefore, \(P(n + 1) \) is also true. By Mathematical Induction, \(P(n) \) is true for all \(n \geq 1 \).

Because formula (3) required the assumption that \(f^n(z) \) exists for all \(n \geq 1 \), we need to determine if there are points \(z \in C \setminus \{2\} \) for which there is a positive integer \(m \) such that
If \(f^n(z) \) does not exist for \(n > m \). The existence of \(f^n(z) \) requires that \(z, f(z), \ldots, f^{n-1}(z) \neq 2 \). Therefore, we have to find all points \(z \) for which \(f^m(z) = 2 \) for some \(m \geq 1 \). One way to do this is to consider the inverse function

\[
f^{-1}(z) = \frac{2z + 2}{z + 3}
\]

and describe

\[
f^{-m}(z) = \left(f^{-1} \circ f^{-1} \circ \ldots \circ f^{-1} \right)(z)
\]

in a manner similar to that used to find formula (3). If we do so, we see that for \(z \neq -3 \),

\[
f^{-m}(z) = \frac{(4^m + 2)z + 2 (4^m - 1)}{(4^m - 1)z + 2 \cdot 4^m + 1}.
\]

In particular,

\[
f^{-m}(2) = \frac{(4^m + 2) \cdot 2 + 2 (4^m - 1)}{(4^m - 1) \cdot 2 + 2 \cdot 4^m + 1} = \frac{4^{m+1} + 2}{4^{m+1} - 1}.
\]

If \(z_m = \frac{4^{m+1} + 2}{4^{m+1} - 1} \) for some \(m \geq 1 \), then it follows that \(f^m(z_m) = 2 \) and hence, \(f^n(z_m) \) is undefined for \(n > m \). Therefore, \(\lim_{n \to +\infty} f^n(z_m) \) does not exist for these points.

Let

\[
S = \{ 2 \} \cup \left\{ \frac{4^{m+1} + 2}{4^{m+1} - 1} : m \in N \right\}.
\]

For \(z \notin S \), \(f^n(z) \) exists for all \(n \geq 1 \). If \(z = 1 \), then \(z \notin S \) and (3) implies that

\[
f^n(1) = \frac{2 (4^n - 1) - (2 \cdot 4^n + 1)}{(4^n - 1) - (4^n + 2)}
\]

\[
= -\frac{3}{-3} = 1
\]

for all \(n \geq 1 \). Hence, \(\lim_{n \to +\infty} f^n(1) = 1 \). For all other values of \(z \notin S \),

\[
\lim_{n \to +\infty} f^n(z) = \lim_{n \to +\infty} \frac{2 (4^n - 1) - (2 \cdot 4^n + 1) z}{(4^n - 1) z - (4^n + 2)}
\]

\[
= \lim_{n \to +\infty} \frac{2 (1 - 4^{-n}) - (2 + 4^{-n}) z}{(1 - 4^{-n}) z - (1 + 2 \cdot 4^{-n})}
\]

\[
= \frac{2 - 2z}{z - 1} = -2.
\]

Therefore, for \(z \notin S \),

\[
\lim_{n \to +\infty} f^n(z) = \begin{cases}
1 & \text{if } z = 1 \\
-2 & \text{otherwise}
\end{cases}
\]

Solution 2 by Henry Ricardo, Westchester Math Circle, NY
We take advantage of the well-known homomorphism between 2×2 matrices and Möbius transformations: \[A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \leftrightarrow f(z) = \frac{az + b}{cz + d} \] In this relation, the n-fold composition $f^n(z)$ corresponds to the nth power of A. Here we are dealing with powers of the matrix $A = \begin{pmatrix} -3 & 2 \\ 1 & -2 \end{pmatrix}$.

Now we invoke a known result that is a consequence of the Cayley-Hamilton theorem: If $A \in M_2(\mathbb{C})$ and the eigenvalues λ_1, λ_2 of A are not equal, then for all $n \geq 1$ we have

$$A^n = \lambda_1^n B + \lambda_2^n C,$$

where $B = \frac{1}{\lambda_1 - \lambda_2} (A - \lambda_2 I_2)$ and $C = \frac{1}{\lambda_2 - \lambda_1} (A - \lambda_1 I_2)$.

(See, for example, Theorem 2.25(a) in *Essential Linear Algebra with Applications* by T. Andreescu, Birkhäuser, 2014.)

The eigenvalues of the given matrix A are -1 and -4, so we apply (\ast) to get

$$A^n = \frac{(-1)^n}{3} (A + 4I_2) - \frac{(-4)^n}{3} (A + I_2) = \left(\frac{(-1)^n - (-4)^n}{3} \right) A + \left(\frac{4 \cdot (-1)^n - (-4)^n}{3} \right) I_2 = \begin{pmatrix} \frac{1}{3}(-1)^n(1 + 2 \cdot 4^n) & \frac{2}{3}(-1)^n + \frac{2}{3}(-1)^{n+1}4^n \\ \frac{1}{3}(-1)^n + \frac{1}{3}(-1)^{n+1}4^n & \frac{1}{3}(-1)^n(2 + 4^n) \end{pmatrix}.$$

After some simplification, we see that

$$f^n(z) = \frac{(2 \cdot 4^n + 1)z - 2(4^n - 1)}{(1 - 4^n)z + (4^n + 2)}.$$

Finally, we note that $f^n(1) = 3/3 = 1$; and, for $z \neq 1$, we have

$$\lim_{n \to +\infty} f^n(z) = \lim_{n \to +\infty} \frac{(2 \cdot 4^n + 1)z - 2(4^n - 1)}{(1 - 4^n)z + (4^n + 2)} = \frac{2(z - 1)}{1 - z} = -2.$$

Therefore,

$$\lim_{n \to +\infty} f^n(z) = \begin{cases} 1 & \text{if } z = 1, \\ -2 & \text{if } z \neq 1. \end{cases}$$

Solution 3 by David E. Manes, Oneonta, NY

We will show by induction that

$$f^{(n)}(z) = \frac{2 - \frac{2a_n + 1}{z}}{\frac{a_n}{z} - \frac{a_n + 1}{a_n}}$$

where $a_n = 4^n - 1$. If $n = 1$, then $a_1 = 1$ and $f^{(1)}(z) = \frac{(2 - 3z)}{(z - 2)} = f(z)$. Therefore, the result is true for $n = 1$. Assume the positive integer $n \geq 1$ and the given formula is valid.
for \(f^{(n)}(z) \). Then

\[
f^{(n+1)}(z) = f(f^{(n)}(z)) = 2 - 3 \left(\frac{2 - 2a_n + 1}{a_n} \right) \left(\frac{z - a_n + 1}{z - a_n} \right)
\]

\[
= 2a_n z - 2a_n - z - 2a_n z + 2a_n + 2 = -2 - 8a_n + (8a_n + 3)z
\]

\[
= \frac{2 + 8a_n - (8a_n + 3)z}{(4a_n + 1)z - (4n + 2)} = \frac{2 + 8 \left(\frac{4^n - 1}{3} \right) - \left(8 \left(\frac{4^n - 1}{3} \right) + 3 \right) z}{4 \left(\frac{4^n - 1}{3} \right) + 1} - \left(\frac{4^n - 1}{3} \right) + 2
\]

\[
= \frac{-2 + 2 \cdot 4^{n+1} - (1 + 2 \cdot 4^{n+1})z}{(4^{n+1} - 1)z - (4^{n+1} + 2)}
\]

\[
= 2 - \left(\frac{2 \cdot 4^{n+1} + 1}{4^{n+1} - 1} \right) z - \left(\frac{4^{n+1} + 2}{4^{n+1} - 1} \right)
\]

\[
= \frac{2 - \left(2a_{n+1} + 1 \right)}{a_{n+1} + 1}
\]

where \(a_{n+1} = \frac{4^{n+1} - 1}{3} \). Note that \(\frac{4^{n+1} + 2}{3} = \frac{4^{n+1} - 1}{3} + 1 = a_{n+1} + 1 \) and

\[
\frac{2 \cdot 4^{n+1} + 1}{3} = \frac{2 \cdot 4^{n+1} - 2}{3} + 1 = 2 \left(\frac{4^{n+1} - 1}{3} \right) + 1 = 2a_{n+1} + 1.
\]

Hence, the result is true for the integer \(n + 1 \) so that by the principle of mathematical induction the result is valid for all positive integers \(n \).

For the limit question, note that if \(f(z) = z \), then \(z = 1 \) or \(z = -2 \). Therefore, one of the fixed points of \(f \) is \(z = 1 \) so that \(f^{(n)}(1) = 1 \) for each positive integer \(n \) and \(\lim_{n \to +\infty} f^{(n)}(1) = 1 \). Moreover, observe that

\[
\lim_{n \to +\infty} \frac{1}{a_n} = \lim_{n \to +\infty} \frac{3}{4^n - 1} = 0.
\]

Therefore, if \(z \neq 1 \), then
\[
\lim_{n \to +\infty} f^{(n)}(z) = \lim_{n \to +\infty} \left(2 - \frac{2a_n + 1}{a_n} \right) z - \frac{a_n + 1}{a_n} = \left(2 - \lim_{n \to +\infty} \left(2 + \frac{1}{a_n} \right) \right) z = \frac{2 - 2z}{z - 1} = -2.
\]

Hence,
\[
\lim_{n \to +\infty} f^{(n)}(z) = \begin{cases}
1, & \text{if } z = 1, \\
-2, & \text{if } z \neq 1.
\end{cases}
\]

Solution 4 by Jeremiah Bartz, University of North Dakota, Grand Forks, ND

Recall the map
\[
f(z) = \frac{az + b}{cz + d} \mapsto \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]
gives a group isomorphism between group of fractional linear transformations
\[
\left\{ f : f(z) = \frac{az + b}{cz + d} \text{ where } a, b, c, d \in \mathbb{C} \text{ and } ad - bc \neq 0 \right\}
\]
under function composition and the group
\[
GL(2, \mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{C} \text{ and } ad - bc \neq 0 \right\}
\]
derived under matrix multiplication.

To compute \(f^n(z) \), let \(M = \begin{pmatrix} -3 & 2 \\ 1 & -2 \end{pmatrix} \). Using induction, we show

\[
M^n = \frac{(-1)^n}{3} \begin{pmatrix} 2^{2n+1} + 1 & -2^{2n+1} + 2 \\ -4^n + 1 & 4^n + 2 \end{pmatrix}
\]

Observe \(M^1 = \frac{-1}{3} \begin{pmatrix} 2^3 + 1 & -2^3 + 2 \\ -3 & 6 \end{pmatrix} = \frac{-1}{3} \begin{pmatrix} 9 & -6 \\ -3 & 6 \end{pmatrix} = \begin{pmatrix} -3 & 2 \\ -1 & -2 \end{pmatrix} \).

Assume

\[
M^n = \frac{(-1)^n}{3} \begin{pmatrix} 2^{2n+1} + 1 & -2^{2n+1} + 2 \\ -4^n + 1 & 4^n + 2 \end{pmatrix}
\]

and observe

\[
M^{n+1} = M^n M
= \frac{(-1)^n}{3} \begin{pmatrix} 2^{2n+1} + 1 & -2^{2n+1} + 2 \\ -4^n + 1 & 4^n + 2 \end{pmatrix} \begin{pmatrix} -3 & 2 \\ 1 & -2 \end{pmatrix}
= \frac{(-1)^n}{3} \begin{pmatrix} -3(2^{2n+1} + 1) + (-2^{2n+1} + 2) & 2(2^{2n+1} + 1) - 2(-2^{2n+1} + 2) \\ -3(-4^n + 1) + (4^n + 2) & 2(-4^n + 1) - 2(4^n + 2) \end{pmatrix}
= \frac{(-1)^{n+1}}{3} \begin{pmatrix} 2^{2(n+1)+1} + 1 & -2^{2(n+1)+1} + 2 \\ -4^{n+1} + 1 & 4^{n+1} + 2 \end{pmatrix}
\]

Using the aforementioned group isomorphism and simplifying, we conclude

\[
f^n(z) = \frac{(2^{2n+1} + 1)z - 2^{2n+1} + 2}{(-4^n + 1)z + 4^n + 2} = \frac{(2 \cdot 4^n + 1)z + (2 - 2 \cdot 4^n)}{(1 - 4^n)z + (2 + 4^n)}.
\]
Notice that the map $f^n(z)$ is undefined for $z = \frac{4^k + 2}{4^k - 1}$ where $1 \leq k \leq n$. Consequently, $\lim_{n \to +\infty} f(z)$ does not exist for these values of z. Furthermore,

$$\lim_{n \to +\infty} f^n(z) = \lim_{n \to +\infty} \frac{(2 \cdot 4^n + 1)z + (2 - 2 \cdot 4^n)}{(1 - 4^n)z + (2 + 4^n)} = \lim_{n \to +\infty} \frac{(2 + \frac{1}{4^n})z + \left(\frac{2}{4^n} - 2\right)}{\left(\frac{1}{4^n} - 1\right)z + \left(\frac{2}{4^n} + 1\right)} \quad = \frac{2z - 2}{-z + 1} \quad = -2 \left(\frac{1 - z}{1 - z}\right).$$

Note $f(1) = 1$ so $f^n(1) = 1$ for all $n \geq 1$. It follows that

$$\lim_{n \to +\infty} f(z) = \begin{cases} \text{DNE} & \text{if } z = \frac{4^n + 2}{4^n - 1} \text{ where } n \in \mathbb{Z}_{>0} \\ 1 & \text{if } z = 1 \\ -2 & \text{otherwise.} \end{cases}$$

Comment by Editor: David Stone and John Hawkins of Georgia Southern University stated the following in their solution: “The appearance of so many sums of powers of 4 prompts us to offer a candidate for the cutest representation of $f^n(z)$:

$$f^n(z) = \frac{(2 \cdot 111 \ldots, 14 + 1)z - 2 \cdot 111 \ldots, 14}{-111 \ldots, 14z + (111 \ldots, 14 + 1)},$$

where each of the base 4 repunits has $n - 1$ digits.”

Solution 5 by Toshihiro Shimizu, Kawasaki, Japan

Let $f^n(z) = \frac{a_nz + b_n}{c_nz + d_n}$. Then, we have

$$\frac{a_{n+1}z + b_{n+1}}{c_{n+1}z + d_{n+1}} = f^{n+1}(z) = f^n \left(\frac{2 - 3z}{z - 2}\right) = \frac{(b_n - 3a_n)z + 2(a_n - b_n)}{(d_n - 3c_n)z + 2(c_n - d_n)}$$

Therefore, we have $a_{n+1} = b_n - 3a_n$, $b_{n+1} = 2a_n - 2b_n$ and $c_{n+1} = d_n - 3c_n$, $d_{n+1} = 2c_n - 2d_n$. Since $f^0(z) = z$, $a_0 = 1$, $b_0 = c_0 = 0$ and $d_0 = 1$. Since $b_n = a_{n+1} + 3a_n$, we have

$$a_{n+2} + 3a_{n+1} = 2a_n - 2(a_{n+1} + 3a_n)$$

$$a_{n+2} + 5a_{n+1} + 4a_n = 0$$
and \(a_1 = b_0 - 3a_0 = -3 \). Thus, we have

\[
a_n = \frac{1}{3} (-1)^n + \frac{2}{3} (-4)^n
\]

\[
b_n = a_{n+1} + 3a_n = \frac{1}{3} (-1)^{n+1} + \frac{2}{3} (-4)^{n+1} + (-1)^n + 2 (-4)^n
\]

\[
= \frac{2}{3} (-1)^n - \frac{2}{3} (-4)^n.
\]

Similarly, we have \(c_{n+2} + 5c_{n+1} + 4c_n = 0 \) and \(c_1 = d_0 - 3c_0 = 1 \). Thus, we have

\[
c_n = \frac{1}{3} (-1)^n - \frac{1}{3} (-4)^n
\]

\[
d_n = c_{n+1} + 3c_n
\]

\[
= \frac{2}{3} (-1)^n + \frac{1}{3} (-4)^n
\]

Therefore,

\[
f^n(z) = \frac{((-1)^n + 2 (-4)^n) z + (2 (-1)^n - 2 (-4)^n)}{((-1)^n - (-4)^n) z + (2 (-1)^n + (-4)^n)}.
\]

If \(z \neq 1 \), we have

\[
f^n(z) = \frac{((\frac{1}{4})^n + 2) z + (2 (\frac{1}{4})^n - 2)}{((\frac{1}{4})^n - 1) z + (2 (\frac{1}{4})^n + 1)}
\]

\[
\rightarrow \frac{2z - 2}{-z + 1}
\]

\[
= -2 \quad (n \rightarrow +\infty).
\]

If \(z = 1 \), the value of \(f^n(z) \) is always 1 and its limit is also 1.

Solution 6 by Kee-Wai Lau, Hong Kong, China

It can easily be proved by induction that

\[
f^n(z) = \frac{2(2^{2n} - 1) - (2^{2n+1} + 1)z}{(2^{2n} - 1)z - (2^{2n} + 1)},
\]

whenever \(z \not\in S_n \), where \(S_n = \{2\} \cup \left\{ \frac{2(2^{2k-1} + 1)}{2^{2k} - 1} : k = 1, 2, 3, \ldots, n \right\} \).

Clearly, \(\lim_{n \rightarrow \infty} f^n(1) = 1 \) and if \(z \not\in T \), where \(T = \{1, 2\} \cup \left\{ \frac{2(2^{2k-1} + 1)}{2^{2k} - 1}, k = 1, 2, 3, \ldots \right\} \), then \(\lim_{n \rightarrow \infty} f^n(z) = -2 \).

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford Technical Community College, Jamestown, NC; Brian D. Beasley, Presbyterian College, Clinton, SC; Brian Bradie, Christopher Newport University, Newport News, VA; Bruno Salgueiro Fanego Viveiro, Spain; Ed Gray, Highland Beach, FL; Moti Levy (two solutions), Rehovot, Israel; Francisco Perdomo and Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain; Trey Smith, Angelo State University, San Angelo, TX; Albert Stadler, Herrliberg, Switzerland; David Stone and John Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.
5438: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Let $k \geq 0$ be an integer and let $\alpha > 0$ be a real number. Prove that

$$\frac{x^{2k}}{(1 - x^2)^{\alpha}} + \frac{y^{2k}}{(1 - y^2)^{\alpha}} + \frac{z^{2k}}{(1 - z^2)^{\alpha}} \geq \frac{x^k y^k}{(1 - xy)^{\alpha}} + \frac{y^k z^k}{(1 - yz)^{\alpha}} + \frac{x^k z^k}{(1 - xz)^{\alpha}},$$

for $x, y, z \in (-1, 1)$.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We note that by the Binomial theorem,

$$\frac{t^{2k}}{(1 - t^2)^{\alpha}} = \sum_{j=0}^{\infty} \left(\begin{array}{c} -\alpha \\ j \end{array} \right) t^{2j}, -1 < t < 1,$$

where $\binom{-\alpha}{j} = \frac{-\alpha(\alpha + 1) \cdots (\alpha + j - 1)}{j!} > 0$ for all indices $j \geq 0$.

Therefore, by the AM–GM inequality,

$$\frac{x^{2k}}{(1 - x^2)^{\alpha}} + \frac{y^{2k}}{(1 - y^2)^{\alpha}} + \frac{z^{2k}}{(1 - z^2)^{\alpha}} = \frac{1}{2} \sum_{cyc} \left(\frac{x^{2k}}{(1 - x^2)^{\alpha}} + \frac{y^{2k}}{(1 - y^2)^{\alpha}} \right)$$

$$\geq \sum_{cyc} \sum_{j=0}^{\infty} (-1)^j \binom{-\alpha}{j} (xy)^{k+j},$$

as claimed.

Solution 2 by Hatef I. Arshagi, Guilford Technical Community College, Jamestown, NC

It is well known that for any real numbers a, b, c

$$a^2 + b^2 + c^2 \geq ab + bc + ca. \quad (1)$$

We show that $a, b \in (-1, 1)$

$$\sqrt{(1 - a^2)(1 - b^2)} \leq 1 - ab. \quad (2)$$

Suppose that to the contrary $\sqrt{(1 - a^2)(1 - b^2)} > 1 - ab$, by squaring both sides of the inequality, we get $1 - a^2 - b^2 + a^2 b^2 > 1 - 2ab + a^2 b^2$, which implies that
\(-a^2 - b^2 + 2ab = -(a - b)^2 > 0\), which is impossible, that is, (2) is proved. From (2), we can conclude that
\[
\frac{1}{\sqrt{(1-a^2)(1-b^2)}} \geq \frac{1}{1-ab}.
\tag{3}
\]
Now, using (1) and (3), we write
\[
x^{2k + (1-x^2)\alpha} + y^{2k + (1-y^2)\alpha} + z^{2k + (1-z^2)\alpha} \geq \frac{x^k y^k}{(1-x^2)(1-y^2)} + \frac{y^k z^k}{(1-y^2)(1-z^2)} + \frac{z^k x^k}{(1-z^2)(1-x^2)}
\]
\[= \frac{x^k y^k}{\sqrt{(1-x^2)(1-y^2)}} + \frac{y^k z^k}{\sqrt{(1-y^2)(1-z^2)}} + \frac{z^k x^k}{\sqrt{(1-z^2)(1-x^2)}} \geq \frac{x^k y^k}{(1-xy)^\alpha} + \frac{y^k z^k}{(1-yz)^\alpha} + \frac{z^k x^k}{(1-zx)^\alpha}.
\]

Solution 3 by Moti Levy, Rehovot, Israel

Since
\[
|a|^k \geq \frac{a^k}{(1-a)^\alpha}, \quad a \in (-1, 1)
\]
then
\[
\frac{|x|^k |y|^k}{(1-|x||y|)^\alpha} + \frac{|y|^k |z|^k}{(1-|y||z|)^\alpha} + \frac{|z|^k |x|^k}{(1-|z||x|)^\alpha} \geq \frac{x^k y^k}{(1-xy)^\alpha} + \frac{y^k z^k}{(1-yz)^\alpha} + \frac{z^k x^k}{(1-zx)^\alpha}.
\]

Therefore, we can assume that \(x, y, z \in (0, 1)\). Using the generalized binomial theorem,
\[
\frac{1}{(1-u)^\alpha} = \sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha)}{n!\Gamma(\alpha)} u^n, \quad |u| < 1.
\]

By the inequality \(a^2 + b^2 + c^2 \geq ab + bc + ca, \quad a, b, c \geq 0\),
\[
(x^{n+k})^2 + (y^{n+k})^2 + (z^{n+k})^2 \geq x^{n+k} y^{n+k} + y^{n+k} z^{n+k} + z^{n+k} x^{n+k}.
\]
\[
\frac{x^{2k}}{(1 - x^2)\alpha} + \frac{y^{2k}}{(1 - y^2)\alpha} + \frac{z^{2k}}{(1 - z^2)\alpha}
= \sum_{n=0}^{\infty} \frac{\Gamma(n + a)}{n!\Gamma(\alpha)} x^{2(n+k)} + \sum_{n=0}^{\infty} \frac{\Gamma(n + a)}{n!\Gamma(\alpha)} y^{2(n+k)} + \sum_{n=0}^{\infty} \frac{\Gamma(n + a)}{n!\Gamma(\alpha)} z^{2(n+k)}
= \sum_{n=0}^{\infty} \frac{\Gamma(n + a)\Gamma(n+k)}{n!\Gamma(\alpha)} (x^{n+k} + y^{n+k} + z^{n+k})
\geq \sum_{n=0}^{\infty} \frac{\Gamma(n + a)}{n!\Gamma(\alpha)} \left(x^{n+k} + y^{n+k} + z^{n+k}\right)
\]

\[
= \sum_{n=0}^{\infty} \frac{\Gamma(n + a)\Gamma(n+k)}{n!\Gamma(\alpha)} x^{n+k} + \sum_{n=0}^{\infty} \frac{\Gamma(n + a)\Gamma(n+k)}{n!\Gamma(\alpha)} y^{n+k} + \sum_{n=0}^{\infty} \frac{\Gamma(n + a)\Gamma(n+k)}{n!\Gamma(\alpha)} z^{n+k}
= \frac{x^k y^k}{(1 - xy)^\alpha} + \frac{y^k z^k}{(1 - yz)^\alpha} + \frac{z^k x^k}{(1 - zx)^\alpha}.
\]

Solution 4 by Kee-Wai Lau, Hong Kong, China

We first note that

\[
0 < (1 - x^2)(1 - y^2) = (1 - xy)^2 - (x - y)^2 \leq (1 - x)^2.
\]

Hence by the AM-GM inequality, we have

\[
\frac{x^{2k}}{(1 - x^2)\alpha} + \frac{y^{2k}}{(1 - y^2)\alpha} \geq \frac{2|xy|^k}{\sqrt{(1 - x^2)\alpha(1 - y^2)\alpha}} \geq \frac{2|xy|^k}{(1 - xy)^\alpha}.
\]

Similarly,

\[
\frac{y^{2k}}{(1 - y^2)\alpha} + \frac{z^{2k}}{(1 - z^2)\alpha} \geq \frac{2|yz|^k}{(1 - yz)^\alpha} \quad \text{and}
\]

\[
\frac{z^{2k}}{(1 - z^2)\alpha} + \frac{x^{2k}}{(1 - x^2)\alpha} \geq \frac{2|xz|^k}{(1 - zx)^\alpha}.
\]

Adding these inequalities, we easily deduce the inequality of the problem.

Also solved by Ed Gray, Highland Beach, FL; Nicusor Zlota, “Traian Vuia” Technical College, Focsani, Romania; Toshihiro Shimizu, Kawasaki, Japan, and the proposer.

Mea Culpa

For a variety of reasons, mostly caused by sloppy bookkeeping, those listed below were not credited for having solved the following problems, but should have been.
5427: Paul M. Harms, North Newton, KS.

5428: Ed Gray, Highland Beach, FL; David Stone and John Hawkins, Georgia Southern University, Statesboro, GA.

5429: Brian D. Beasley, Presbyterian College, Clinton, SC.

5431: Albert Stadler, Herrliberg, Switzerland.